~% COURSE TECHNOLOGY

A~ CENGAGE Learning

JavaScript, Sixth Edition

Chapter 2

Working with Functions, Data Types,
and Operators

5/19/2015

Objectives

When you complete this chapter, you will be able to:
» Use functions to organize your JavaScript code
» Use expressions and operators

* Identify the order of operator precedence in an
expression

JavaScript, Sixth Edition 2

Working with Functions

* Methods
— Procedures associated with an object
* Functions
— Related group of JavaScript statements
— Executed as a single unit
— Virtually identical to methods
» Not associated with an object
— Must be contained within a script element

JavaScript, Sixth Edition

Defining Functions

* Named function
— Related statements assigned a name
— Call, or reference, named function to execute it
* Anonymous function
— Related statements with no name assigned
— Work only where they are located in code
» Use named function when you want to reuse code
+ Use anonymous function for code that runs only once

Javascript, Sixth Edition 4

Defining Functions (cont'd.)

* Function definition
— Lines making up a function
» Named function syntax
function name of function(parameters)
statements;
}
* Anonymous function syntax
function (parameters) {
statements;

JavaScript, Sixth Edition

{

Defining Functions (cont'd.)

» Parameter
— Variable used within a function
— Placed within parentheses following a function name

— Multiple parameters allowed
calculateVolume (length, width, height)

JavaScript, Sixth Edition 6

5/19/2015

Defining Functions (cont'd.)

» Function statements
— Do the actual work
— Contained within function braces
* Put functions in an external .js file
— Reference at bottom of body section
calculateVolume (length, width, height) {

volume length width height;
document .write (volume) ;

JavaScript, Sixth Edition

Calling Functions

* To execute a named function:
— Must invoke, or call, it
+ Function call
— Code calling a function
— Consists of function name followed by parentheses

« Contains any variables or values assigned to the
function parameters

» Arguments (actual parameters)

— Variables (values) placed in the function call
statement parentheses

JavaScript, Sixth Edition 8

Calling Functions (cont'd.)

» Passing arguments

— Sending arguments to parameters of a called function
» Argument value assigned to the corresponding
parameter value in the function definition

JavaScript, Sixth Edition 9

Calling Functions (cont'd.)

» Handling events
— Three options
« Specify function as value for HTML attribute
<input type="submit" onclick="showMessage()" />
« Specify function as property value for object

document.getElementByld("submitButton").onclick =¢ showMessage;

* Use addEventListener () method

var submit = document.getElementByld("submitButton’);

ubmit. istener("click", false);

JavaScript, Sixth Edition 10

Calling Functions (cont'd.)

* Adding an event listener is most flexible
— Separates HTML and JavaScript code
— Can specify several event handlers for a single event
» |E8 requires use of the attachEvent () method
instead of addEventListener () (see Chapter 3)

JavaScript, Sixth Edition u

Locating Errors with the Browser
Console

+ Unintentional coding mistakes keep code from
working
— Browsers generate error messages in response
— Messages displayed in browser console pane
— Hidden by default to avoid alarming users
» Developers display browser console to see errors

BROWSER KEYBOARD SHORTCUT i MENU STEPS
Intenet Explorer F12, then Gtrl + 2 Ciick the Tools button, ciick F12 Developer Tools on
the menu, and then in the window that opens, click the
Console button
Firgfox Ctrl + Shift + K (Win) Ciick the Firefox bution (Win) or Tools (Mac or Wir),
option + command + K (Mac) point to Web Developer, and then click Web Console.
Chrome: Ctrl + Shift + J (Win) Click the Customize and control Google Chrome

option + command + J {Mac) button, point ta Tools, and then click JavaScript
console
JavaScript, Sixth Edition 12

5/19/2015

Locating Errors with the Browser
Console (cont'd.)

» Consoles specify a line number with each error

] 0 X oo

Figure 2-3: Internet Explorer browser console

L T e ——— LX)

Figure 2-4: Chrome browser console

JavaScript, Sixth Edition

Using Return Statements

Can return function value to a calling statement
Return statement

— Returns a value to the statement calling the function

— Use the return keyword with the variable or value to
send to the calling statement

Example:

function averageNumbers(a, b, c) {
var sum_of_numbers=a +b +c;
var result = sum_of_numbers/ 3;
return result;

}

JavaScript, Sixth Edition 14

Understanding Variable Scope

* Variable scope
— Where in code a declared variable can be used
* Global variable
— Declared outside a function
« Available to all parts of code
* Local variable
— Declared inside a function

+ Only available within the function in which it is declared

— Cease to exist when the function ends
— Keyword var required

JavaScript, Sixth Edition 15

Understanding Variable Scope
(cont’ d.)

Good programming technique
— Always use the var keyword when declaring
variables
« Clarifies where and when variable used
Poor programming technique

— Declaring a global variable inside of a function by not
using the var keyword

« Harder to identify global variables in your scripts

JavaScript, Sixth Edition 16

Understanding Variable Scope
(cont’d.)
« If variable declared within a function and does not
include the var keyword
— Variable automatically becomes a global variable

» Program may contain global and local variables with
the same name

— Local variable takes precedence
— Value assigned to local variable of the same name
+ Not assigned to global variable of the same name

JavaScript, Sixth Edition

Understanding Variable Scope
(cont’d.)

var color = "green”;

function duplicateVariableNames() {
var color = "purple";
document.write(color);
Il value printed is purple

duplicateVariableNames();
document.write(color);

/I value printed is green

JavaScript, Sixth Edition 18

5/19/2015

Using Built-in JavaScript Functions

» Called the same way a custom function is called

FUNCTION i DESCRIPTION

decodeURI (string) Decodes text strings encoded with encodeURT ()

decodeURIComponent (string) Decades text strings encoded with
encodeURIComponent ()

encodelRI (string) Encodes 2 text string 50 it becomes a valid URI

encodeURIComponent (string) Encades a text string 5o it becomes a valid URI component

eval (string) Evaluates expressions contained within stings

isFinite (number) Determines whether a number is finite

isNaN (number) Determines whethera value is the special value a1y
(Not a Number)

parseFloat (string) Converts string literals to floating-point numbers

parseInt(string) Gonverts string lterals o integers

Table 2-2 Built-in JavaScript functions

JavaScript, Sixth Edition 19

Working with Data Types

» Data type

— Specific information category a variable contains
* Primitive types

— Data types assigned a single value

DATATYPE | DESCRIFTION
number ‘A positive or negative number with or without decimal places, or a number written using
exponential notation

Boolean Alogical value of true or false

sting Text such as *Hello World”

undefined An unassigned, undeclared, or nonexistent value
null An emply value

Table 2-3 Primitive JavaScript data types

JavaScript, Sixth Edition 20

Working with Data Types (cont’ d.)

* The null value: data type and a value

— Can be assigned to a variable

— Indicates no usable value

— Use: ensure a variable does not contain any data
» Undefined variable

— Never had a value assigned to it, has not been
declared, or does not exist

— Indicates variable never assigned a value: not even
null

— Use: determine if a value being used by another part
of a script

JavaScript, Sixth Edition 21

Working with Data Types (cont’ d.)

var stateTax;
document.write(stateTax);
stateTax = 40;
document.write(stateTax);
stateTax = null;
document.write(stateTax);

undefined
40

null

Figure 2-7 Variable assigned values
of undefined and null

Javascript, Sixth Edition 22

Working with Data Types (cont’ d.)

+ Strongly typed programming languages
— Require declaration of the data types of variables
— Strong typing also known as static typing
« Data types do not change after declared
* Loosely typed programming languages
— Do not require declaration of the data types of
variables
— Loose typing also known as dynamic typing
« Data types can change after declared

JavaScript, Sixth Edition 23

Working with Data Types (cont’ d.)

» JavaScript interpreter automatically determines data
type stored in a variable

+ Examples:
diff Types = "Hello World"; // String
diffTypes = 8; /I Integer number
diffTypes = 5.367; /I Floating-point number
diffTypes = true; / Boolean
diffTypes = null; 1/ Null

JavaScript, Sixth Edition 24

5/19/2015

Understanding Numeric Data Types

» JavaScript supports two numeric data types

— Integers and floating-point numbers
* Integer

— Positive or negative number with no decimal places
* Floating-point number

— Number containing decimal places or written in
exponential notation
— Exponential notation (scientific notation)
+ Shortened format for writing very large numbers or
numbers with many decimal places

JavaScript, Sixth Edition

Using Boolean Values

* Logical value of true or false
— Used for decision making
» Which parts of a program should execute
— Used for comparing data
» JavaScript programming Boolean values
— The words true and false

« JavaScript converts true and false values to the
integers 1 and O when necessary

JavaScript, Sixth Edition 26

Using Boolean Values (cont’ d.)

1 var newCustomer = true;

2 var contractorRates = false;

3 document.write("<p>New customer: " + newCustomer + "</p>");
4 document.write("<p>Contractor rates: " + contractorRates +¢
5"</p>");

New customer: true

Contractor rates: false

Figure 2-9 Boolean values

JavaScript, Sixth Edition

Working with Strings

» Text string
— Contains zero or more characters
« Surrounded by double or single quotation marks

— Can be used as literal values or assigned to a
variable

* Empty string
— Zero-length string value
— Valid for literal strings
« Not considered to be null or undefined

Javascript, Sixth Edition 28

Working with Strings (cont’ d.)

* To include a quoted string within a literal string
surrounded by double quotation marks

— Surround the quoted string with single quotation
marks

» To include a quoted string within a literal string
surrounded by single quotation marks

— Surround the quoted string with double quotation
marks

« String must begin and end with the same type of
quotation marks

JavaScript, Sixth Edition

. . .]
Working with Strings (cont’ d.)
document.write("<h1>Speech at the Berlin Wall¢
(excerpt)</h1>");
document.write("<p>Two thousand years ago, the proudest boaste
was ‘civis Romanus sum.'
");
document.write('Today, in the world of freedom, the proudest¢
boast is "Ich bin ein Berliner."</p>");
var speaker = "<p>John F. Kennedy</br>";
var date = 'June 26, 1963</p>";
document.write(speaker);

document.write(date);

Speech at the Berlin Wall (excerpt)

Tiwo thousand years ago, the proudest boast was ‘ciis Romanus sum.!
Today, in the world of freedom, the proudest boast is *lch bin ein Berliner.”

John F. Kennedy
June 26,1963

Figure 2-10 String examples in a browser

JavaScript, Sixth Edition 30

5/19/2015

Working with Strings (cont’ d.)

 String operators

— Concatenation operator (+): combines two strings
var destination = "Honolulu";

var location = "Hawaii";
destination = destination + " is in " + location;
» Compound assignment operator (+=): combines two
strings
var destination = "Honolulu";
destination += " is in Hawaii";

* Plus sign
— Concatenation operator and addition operator

JavaScript, Sixth Edition 31

Working with Strings (cont’ d.)

» Escape characters and sequences
— Escape character

« Tells the compiler or interpreter that the character that
follows has a special purpose

« In JavaScript, escape character is backslash (\)

— Escape sequence
« Escape character combined with other characters
« Most escape sequences carry out special functions

JavaScript, Sixth Edition 32

Working with Strings (cont’ d.)

W Backslash

\b Backspace

\r Cartage retum

w Dauble quotation mark

A Form feed

\t Hortzontaltab

\n Newine

\o Null character

W Single quotation mark (apostrophe)

v Vertical tab

\xHK Latin-1 chaacter specified by the X characters, which represent two hexadecimal
digits

\uxKxK Unicode characier specifid by the 2cxxx characters, which represent four
hexadecimal digits

Table 2-4 JavaScript escape sequences
JavaScript, Sixth Edition 33

Using Operators to Build Expressions
oo oo Losown

OPERATONTYPE _ OFORORS oEsowToN
wrane aarson |4 Parbem matrenascal conters,
wtincien)
Pl (¢)

Ay s © vkt

Comsaren Cangers o i o a
e

st squt (1)

-
e
e e
[———
Table 2-5 JavaScript operator types (continues)
JavaScript, Sixth Edition 34

Using Operators to Build Expressions
(cont’d.)

OPERATOR TYPE _: OPERATORS : DESCRPTION

Logical And (68) Perform Booiean operations on Boolean
- aperands
Not (1)

String concatenation (+) Perform operations on strings
compound concatenation assignment (+=)

Specia propery aceess (.) Various purposes; do nat it within other
anay index ([7) operator categories
function cal (())
comma (,)

conditonal expression (2 :)
delete (de lete)
property exists (< n)
object type (instanceos)
new object (nes)
data ype (t ypeof)
void (void)
Table 2-5 JavaScript operator types (cont'd.)
JavaScript, Sixth Edition 35

Using Operators to Build Expressions
(cont’d.)

* Binary operator
— Requires an operand before and after the operator
* Unary operator

— Requires a single operand either before or after the
operator

JavaScript, Sixth Edition 36

5/19/2015

Arithmetic Operators

» Perform mathematical calculations
— Addition, subtraction, multiplication, division
— Returns the modulus of a calculation

« Arithmetic binary operators

(3 : OPERATOR : DESCRIPTION

Addtion + Adds two operands

Subtraction - Sublracts one operand from another operand

Multiplication i Multiplies cne operand by another operand

Division / Divices one operand by anather operand

Modulus % Divides one operand by another operand and returns the remainder

Table 2-6 Arithmetic binary operators

JavaScript, Sixth Edition

Arithmetic Operators (cont’ d.)

* Arithmetic binary operators (cont’ d.)
— Value of operation on right side of the assignment
operator assigned to variable on the left side
— Example: arithmeticvValue = x + y;
* Result assigned to the arithmeticValue variable
— Division operator (/)
« Standard mathematical division operation
— Modulus operator (%)

« Returns the remainder resulting from the division of two
integers

JavaScript, Sixth Edition 38

Arithmetic Operators (cont’ d.)

var divisionResult = 15/ 6;
var modulusResult = 15 % 6;
document.write("<p>15 divided by 6 is "¢
+ divisionResult + ".</p>"); // prints 2.5
document.write("<p>The whole number 6 goes into 15 twice,

with a remainder of "+ modulusResult + ".</p>");¢ // prints ‘3"

15 divided by 6 is 2.5.

‘The wholg number 6 goes into 15 twice, with a remainder of 3.

Figure 2-13 Division and modulus expressions

JavaScript, Sixth Edition

Arithmetic Operators (cont’ d.)

* Arithmetic binary operators (cont’ d.)
— Assignment statement

« Can include combination of variables and literal values
on the right side

« Cannot include a literal value as the left operand
— JavaScript interpreter
« Attempts to convert the string values to numbers

« Does not convert strings to numbers when using the
addition operator

JavaScript, Sixth Edition 40

Arithmetic Operators (cont’ d.)

« Prefix operator

— Placed before a variable
* Postfix operator

— Placed after a variable

NAME : OPERATOR : DESCRIPTION

Increment - Increases an operand by a value of one

Degrement = Decreases &n operand by a value of one

Negaton = Returns the apposite valug (negative or positive) of an operand

Table 2-7 Arithmetic unary operators

JavaScript, Sixth Edition

Arithmetic Operators (cont’ d.)

 Arithmetic unary operators
— Performed on a single variable using unary operators
— Increment (++) unary operator: used as prefix
operators
« Prefix operator placed before a variable
— Decrement (--) unary operator: used as postfix
operator
« Postfix operator placed after a variable
— Example: ++count; and count++;
« Both increase the count variable by one, but return
different values

JavaScript, Sixth Edition 42

5/19/2015

Arithmetic Operators (cont’ d.)

4 o
€ studentID;
7 "<p>Th nd -
] nefpn)
9 studentID;
0 "<p>The third “
1 curStudentID + "</p>");

“The first student 10 is 101
The second student ID is 102

‘The third student D is 103

Figure 2-14 Output of the prefix version of the student ID script

Arithmetic Operators (cont’ d.)

studentID - 1007

Il o

5 curStudentID

6 curStudentID - studentID 1
decument.write (" -

] curStudentID

9 dentID udentID 1

10 “

11

The first student ID is 100
The second student ID is 101
The third student ID is 102

Figure 2-15 Output of the postfix version of the student ID script

JavaScript, Sixth Edition 43 JavaScript, Sixth Edition 44
. ’
. Assignment Operators (cont’ d.)
Assignment Operators
NAME : OPERATO! DESCRIPTION
Assignment - Assigns the value of the right operand to the left operand
* Used for assigning a value to a variable v R s
* Equal sign (=) T T
— Assigns initial value to a new variable e) e S e
— Assigns new value to an existing variable Compound mutiplcation~ * Muplies the value of the ight operand by the value of the eft
. assignment operand, and assigns the new value to the left operand
» Compound assignment operators Compound dison /- Divides the valug of the eft ogerand by he value of the right aperand,
. . . assignment and assigns the new value to the left operand
- Perform mathematlcal CaICUIatlonS on Va“ables and Compound modulus * Divides the value of the left operand by the value of the right operand,
literal values in an expression assignment and assigns the remainder (the moculus) to the left operand
« Then assign a new value to the left operand Table 2-8 Assignment operators
JavaScript, Sixth Edition 45 JavaScript, Sixth Edition 46
. ’ H ’
Assignment Operators (cont’ d.) Assignment Operators (cont’ d.)
+ += compound addition assignment operator + Examples: (cont’ d.)
— Used to combine two strings and to add numbers i
* Examples: B! v
JavaScript, Sixth Edition X a7 JavaScript, Sixth Edition 48

5/19/2015

Comparison and Conditional Operators

« Comparison operators
— Compare two operands
» Determine if one numeric value is greater than another
— Boolean value of true or false returned after compare
» Operands of comparison operators
— Two numeric values: compared numerically

— Two nonnumeric values: compared in alphabetical
order

— Number and a string: convert string value to a number
« If conversion fails: value of false returned

JavaScript, Sixth Edition 49

Comparison and Conditional Operators
(cont’d.)

NAME i OPERATOR | DESCRIPTION

Enual = Returns true if the operands are equal

Stict equal Returns true if the operands are equal and of the same type

Not equal 1= Returns true if the operands are not equal

Strict not equal ! Returns true if the operands are not equal or not of the same type

Greater than > Returns true if the left operand is greater than the right operand

Less than < Returns true if the left operand is less than the right operand

Greater than orequal >= Returns true if the left operand s greater than or equal to the right
operand

Lessthanorequal < Returns true i the left operand is less than or equal to the right aperand

Table 2-9 Comparison operators

JavaScript, Sixth Edition 50

Comparison and Conditional Operators
(cont’d.)

» Conditional operator
— Executes one of two expressions based on
conditional expression results

— Syntax
conditional expression ? expressionl : expression2;

— If conditional expression evaluates to true:
* Then expressionl executes

— If the conditional expression evaluates to false:
* Then expression2 executes

JavaScript, Sixth Edition 51

Comparison and Conditional Operators
(cont’ d.)

» Example of conditional operator:

/ar intVariable = 150;
var result;
intVariable > 100 ?¢
result = "intVariable is greater than 100" :¢
result = "intVariable is less than or equal to 100";
document.write(result);

JavaScript, Sixth Edition 52

Falsy and Truthy Values

» Six falsy values treated like Boolean false:

nn

--0

-0

— NaN

- null

- undefined

» All other values are truthy, treated like Boolean
true

JavaScript, Sixth Edition 53

Logical Operators

* Compare two Boolean operands for equality

NAME : OPERATOR : DESGRIPTION

And & Returns £ rue if both the left operand and right operand return a value of true;
othenwise, it returns a value of false

or 1 Returns t rue if gither the left operand or right operand returns a value of £ rue;
f neither operand returns a value of t.rue, then the expression containing the
Or | | operator returns a valug of £alse

Nat ' Retuns true If an expression is faise, and retums £a 1 se ff an expression
istue

Table 2-10 Logical operators

JavaScript, Sixth Edition 54

5/19/2015

Special Operators

NAME © OPERATOR : DESCRIPTION

Proerty access - ‘Appends an object, method, or property to another object

Array index 8] Accesses an element of an aray

Function call 0 Calls up functions or changes the order in which indiidual
‘operations in an expression are evaluated

Comma ‘ Allows you to include multple expressions in the same statement

Conditional expression 2: Executes one of two expressions based on the results of a
conditional expression

Delete delete Deletes array elements, variables created withoutthe var
keywiord, and properiies of custom objects

Proerty exists in Returns a value of & rue if a specified property is contained
within an object

Object type instanceol Retums true if an object is of a specified object type

New object new Creates a new instance of a user-defined object type or a
predefined JavaScript object type

Data type typeof Determines the data type of a variable

Void veid Evaluates an expression without returning a result

Table 2-11 Special operators

JavaScript, Sixth Edition 56

Special Operators (cont’ d.)

number Integers and floating-point nurbers
string Text strings.

boolean True or false

object Objects, arrays, and null variables
function Functions

undefined Undefined variables

Table 2-12 Values returned by typeof operator

JavaScript, Sixth Edition 56

Understanding Operator Precedence

» Operator precedence
— Order in which operations in an expression evaluate
» Associativity

— Order in which operators of equal precedence
execute

— Left to right associativity
— Right to left associativity

Understanding Operator Precedence
(cont’ d.)

» Evaluating associativity
— Example: multiplication and division operators
« Associativity of left to right
First operation Second operation
(division) \ / (multplication)
30752
Tontogn] =0
Figure 2-16 Conceptual illustration
of left to right associativity

JavaScript, Sixth Edition 57 JavaScript, Sixth Edition 58
Understanding Operator Precedence
. Summary
(cont d.)
 Evaluating associativity (cont’ d.) * Functions

— Example: Assignment operator and compound
assignment operators

« Associativity of right to left

*X =y *= ++x Secand operation

Trird operation (compound multiplication First operation
(assignment) assignment) (increment)

\L

XZy = aex
Associativty
= ok
Figure 2-17 Conceptual illustration

Javascript, Sixth Edition of right-to-left associativity 50

— Similar to methods associated with an object
— Pass parameters
— To execute, must be called
+ Variable scope
— Where a declared variable can be used
— Global and local variables
» Data type
— Specific category of information a variable contains
— Static typing and dynamic typing

JavaScript, Sixth Edition 60

10

Summary (cont’ d.)

* Numeric data types: integer and floating point
* Boolean values: true and false

» Strings: one or more character surrounded by
double or single quotes

— String operators

— Escape character
» Operators build expressions
» Operator precedence

— Order in which operations in an expression are
evaluated

JavaScript, Sixth Edition

5/19/2015

11

