
5/19/2015

1

JavaScript, Sixth Edition

Chapter 2

Working with Functions, Data Types,
and Operators

JavaScript, Sixth Edition 2

Objectives

When you complete this chapter, you will be able to:

• Use functions to organize your JavaScript code

• Use expressions and operators

• Identify the order of operator precedence in an

expression

JavaScript, Sixth Edition 3

Working with Functions

• Methods

– Procedures associated with an object

• Functions

– Related group of JavaScript statements

– Executed as a single unit

– Virtually identical to methods

• Not associated with an object

– Must be contained within a script element

JavaScript, Sixth Edition 4

Defining Functions

• Named function

– Related statements assigned a name

– Call, or reference, named function to execute it

• Anonymous function

– Related statements with no name assigned

– Work only where they are located in code

• Use named function when you want to reuse code

• Use anonymous function for code that runs only once

JavaScript, Sixth Edition 5

Defining Functions (cont'd.)

• Function definition

– Lines making up a function

• Named function syntax
function name_of_function(parameters) {

statements;

}

• Anonymous function syntax
function (parameters) {

statements;

}

JavaScript, Sixth Edition 6

Defining Functions (cont'd.)

• Parameter

– Variable used within a function

– Placed within parentheses following a function name

– Multiple parameters allowed
calculateVolume(length, width, height)

5/19/2015

2

JavaScript, Sixth Edition 7

Defining Functions (cont'd.)

• Function statements

– Do the actual work

– Contained within function braces

• Put functions in an external .js file

– Reference at bottom of body section

function calculateVolume(length, width, height) {

var volume = length * width * height;

document.write(volume);

}

Calling Functions

• To execute a named function:

– Must invoke, or call, it

• Function call

– Code calling a function

– Consists of function name followed by parentheses

• Contains any variables or values assigned to the

function parameters

• Arguments (actual parameters)

– Variables (values) placed in the function call

statement parentheses

JavaScript, Sixth Edition 8

JavaScript, Sixth Edition 9

Calling Functions (cont'd.)

• Passing arguments

– Sending arguments to parameters of a called function

• Argument value assigned to the corresponding

parameter value in the function definition

JavaScript, Sixth Edition 10

Calling Functions (cont'd.)

• Handling events

– Three options

• Specify function as value for HTML attribute

<input type="submit" onclick="showMessage()" />

• Specify function as property value for object

document.getElementById("submitButton").onclick =↵ showMessage;

• Use addEventListener() method
var submit = document.getElementById("submitButton");

submit.addEventListener("click", showMessage, false);

JavaScript, Sixth Edition 11

Calling Functions (cont'd.)

• Adding an event listener is most flexible

– Separates HTML and JavaScript code

– Can specify several event handlers for a single event

• IE8 requires use of the attachEvent() method

instead of addEventListener() (see Chapter 3)

JavaScript, Sixth Edition 12

Locating Errors with the Browser

Console

• Unintentional coding mistakes keep code from

working

– Browsers generate error messages in response

– Messages displayed in browser console pane

– Hidden by default to avoid alarming users

• Developers display browser console to see errors

5/19/2015

3

JavaScript, Sixth Edition 13

Locating Errors with the Browser

Console (cont'd.)

• Consoles specify a line number with each error

Figure 2-3: Internet Explorer browser console

Figure 2-4: Chrome browser console

JavaScript, Sixth Edition 14

Using Return Statements

• Can return function value to a calling statement

• Return statement

– Returns a value to the statement calling the function

– Use the return keyword with the variable or value to

send to the calling statement

• Example:
function averageNumbers(a, b, c) {

var sum_of_numbers = a + b + c;

var result = sum_of_numbers / 3;

return result;

}

JavaScript, Sixth Edition 15

Understanding Variable Scope

• Variable scope

– Where in code a declared variable can be used

• Global variable

– Declared outside a function

• Available to all parts of code

• Local variable

– Declared inside a function

• Only available within the function in which it is declared

– Cease to exist when the function ends

– Keyword var required

JavaScript, Sixth Edition 16

Understanding Variable Scope

(cont’d.)

• Good programming technique

– Always use the var keyword when declaring

variables

• Clarifies where and when variable used

• Poor programming technique

– Declaring a global variable inside of a function by not
using the var keyword

• Harder to identify global variables in your scripts

Understanding Variable Scope

(cont’d.)

• If variable declared within a function and does not
include the var keyword

– Variable automatically becomes a global variable

• Program may contain global and local variables with

the same name

– Local variable takes precedence

– Value assigned to local variable of the same name

• Not assigned to global variable of the same name

JavaScript, Sixth Edition 17 JavaScript, Sixth Edition 18

var color = "green";

function duplicateVariableNames() {

var color = "purple";

document.write(color);

// value printed is purple

}

duplicateVariableNames();

document.write(color);

// value printed is green

Understanding Variable Scope

(cont’d.)

5/19/2015

4

JavaScript, Sixth Edition 19

Using Built-in JavaScript Functions

• Called the same way a custom function is called

Table 2-2 Built-in JavaScript functions

JavaScript, Sixth Edition 20

Working with Data Types

• Data type
– Specific information category a variable contains

• Primitive types
– Data types assigned a single value

Table 2-3 Primitive JavaScript data types

JavaScript, Sixth Edition 21

Working with Data Types (cont’d.)

• The null value: data type and a value

– Can be assigned to a variable

– Indicates no usable value

– Use: ensure a variable does not contain any data

• Undefined variable

– Never had a value assigned to it, has not been
declared, or does not exist

– Indicates variable never assigned a value: not even
null

– Use: determine if a value being used by another part
of a script

JavaScript, Sixth Edition 22

Figure 2-7 Variable assigned values
of undefined and null

var stateTax;

document.write(stateTax);

stateTax = 40;

document.write(stateTax);

stateTax = null;

document.write(stateTax);

Working with Data Types (cont’d.)

JavaScript, Sixth Edition 23

Working with Data Types (cont’d.)

• Strongly typed programming languages

– Require declaration of the data types of variables

– Strong typing also known as static typing

• Data types do not change after declared

• Loosely typed programming languages

– Do not require declaration of the data types of

variables

– Loose typing also known as dynamic typing

• Data types can change after declared

JavaScript, Sixth Edition 24

Working with Data Types (cont’d.)

• JavaScript interpreter automatically determines data

type stored in a variable

• Examples:

diffTypes = "Hello World"; // String

diffTypes = 8; // Integer number

diffTypes = 5.367; // Floating-point number

diffTypes = true; // Boolean

diffTypes = null; // Null

5/19/2015

5

Understanding Numeric Data Types

• JavaScript supports two numeric data types

– Integers and floating-point numbers

• Integer

– Positive or negative number with no decimal places

• Floating-point number

– Number containing decimal places or written in

exponential notation

– Exponential notation (scientific notation)

• Shortened format for writing very large numbers or

numbers with many decimal places

JavaScript, Sixth Edition 25

Using Boolean Values

• Logical value of true or false

– Used for decision making

• Which parts of a program should execute

– Used for comparing data

• JavaScript programming Boolean values

– The words true and false

• JavaScript converts true and false values to the

integers 1 and 0 when necessary

JavaScript, Sixth Edition 26

JavaScript, Sixth Edition 27

Figure 2-9 Boolean values

1 var newCustomer = true;

2 var contractorRates = false;

3 document.write("<p>New customer: " + newCustomer + "</p>");

4 document.write("<p>Contractor rates: " + contractorRates +↵

5 "</p>");

Using Boolean Values (cont’d.)

JavaScript, Sixth Edition 28

Working with Strings

• Text string

– Contains zero or more characters

• Surrounded by double or single quotation marks

– Can be used as literal values or assigned to a

variable

• Empty string

– Zero-length string value

– Valid for literal strings

• Not considered to be null or undefined

Working with Strings (cont’d.)

• To include a quoted string within a literal string

surrounded by double quotation marks

– Surround the quoted string with single quotation

marks

• To include a quoted string within a literal string

surrounded by single quotation marks

– Surround the quoted string with double quotation

marks

• String must begin and end with the same type of

quotation marks

JavaScript, Sixth Edition 29 JavaScript, Sixth Edition 30

Figure 2-10 String examples in a browser

Working with Strings (cont’d.)
document.write("<h1>Speech at the Berlin Wall↵

(excerpt)</h1>");

document.write("<p>Two thousand years ago, the proudest boast↵
was 'civis Romanus sum.'
");

document.write('Today, in the world of freedom, the proudest↵
boast is "Ich bin ein Berliner."</p>');

var speaker = "<p>John F. Kennedy</br>";

var date = 'June 26, 1963</p>';

document.write(speaker);

document.write(date);

5/19/2015

6

JavaScript, Sixth Edition 31

Working with Strings (cont’d.)

• String operators

– Concatenation operator (+): combines two strings
var destination = "Honolulu";

var location = "Hawaii";

destination = destination + " is in " + location;

• Compound assignment operator (+=): combines two

strings
var destination = "Honolulu";

destination += " is in Hawaii";

• Plus sign

– Concatenation operator and addition operator

Working with Strings (cont’d.)

• Escape characters and sequences

– Escape character

• Tells the compiler or interpreter that the character that

follows has a special purpose

• In JavaScript, escape character is backslash (\)

– Escape sequence

• Escape character combined with other characters

• Most escape sequences carry out special functions

JavaScript, Sixth Edition 32

JavaScript, Sixth Edition 33

Table 2-4 JavaScript escape sequences

Working with Strings (cont’d.)

JavaScript, Sixth Edition 34

Using Operators to Build Expressions

Table 2-5 JavaScript operator types (continues)

JavaScript, Sixth Edition 35

Table 2-5 JavaScript operator types (cont'd.)

Using Operators to Build Expressions

(cont’d.)

JavaScript, Sixth Edition 36

Using Operators to Build Expressions

(cont’d.)

• Binary operator

– Requires an operand before and after the operator

• Unary operator

– Requires a single operand either before or after the

operator

5/19/2015

7

JavaScript, Sixth Edition 37

Arithmetic Operators

• Perform mathematical calculations

– Addition, subtraction, multiplication, division

– Returns the modulus of a calculation

• Arithmetic binary operators

Table 2-6 Arithmetic binary operators

JavaScript, Sixth Edition 38

Arithmetic Operators (cont’d.)

• Arithmetic binary operators (cont’d.)

– Value of operation on right side of the assignment

operator assigned to variable on the left side

– Example: arithmeticValue = x + y;

• Result assigned to the arithmeticValue variable

– Division operator (/)

• Standard mathematical division operation

– Modulus operator (%)

• Returns the remainder resulting from the division of two

integers

JavaScript, Sixth Edition 39

Figure 2-13 Division and modulus expressions

Arithmetic Operators (cont’d.)
var divisionResult = 15 / 6;

var modulusResult = 15 % 6;

document.write("<p>15 divided by 6 is "↵
+ divisionResult + ".</p>"); // prints '2.5'

document.write("<p>The whole number 6 goes into 15 twice,↵

with a remainder of "+ modulusResult + ".</p>");↵ // prints '3'

JavaScript, Sixth Edition 40

Arithmetic Operators (cont’d.)

• Arithmetic binary operators (cont’d.)

– Assignment statement

• Can include combination of variables and literal values

on the right side

• Cannot include a literal value as the left operand

– JavaScript interpreter

• Attempts to convert the string values to numbers

• Does not convert strings to numbers when using the

addition operator

JavaScript, Sixth Edition 41

Arithmetic Operators (cont’d.)

• Prefix operator

– Placed before a variable

• Postfix operator

– Placed after a variable

Table 2-7 Arithmetic unary operators

JavaScript, Sixth Edition 42

Arithmetic Operators (cont’d.)

• Arithmetic unary operators

– Performed on a single variable using unary operators

– Increment (++) unary operator: used as prefix

operators

• Prefix operator placed before a variable

– Decrement (--) unary operator: used as postfix

operator

• Postfix operator placed after a variable

– Example: ++count; and count++;

• Both increase the count variable by one, but return

different values

5/19/2015

8

JavaScript, Sixth Edition 43

Figure 2-14 Output of the prefix version of the student ID script

Arithmetic Operators (cont’d.)

JavaScript, Sixth Edition 44

Figure 2-15 Output of the postfix version of the student ID script

Arithmetic Operators (cont’d.)

JavaScript, Sixth Edition 45

Assignment Operators

• Used for assigning a value to a variable

• Equal sign (=)

– Assigns initial value to a new variable

– Assigns new value to an existing variable

• Compound assignment operators

– Perform mathematical calculations on variables and

literal values in an expression

• Then assign a new value to the left operand

JavaScript, Sixth Edition 46

Table 2-8 Assignment operators

Assignment Operators (cont’d.)

JavaScript, Sixth Edition 47

Assignment Operators (cont’d.)

• += compound addition assignment operator

– Used to combine two strings and to add numbers

• Examples:

JavaScript, Sixth Edition 48

Assignment Operators (cont’d.)

• Examples: (cont’d.)

5/19/2015

9

JavaScript, Sixth Edition 49

Comparison and Conditional Operators

• Comparison operators

– Compare two operands

• Determine if one numeric value is greater than another

– Boolean value of true or false returned after compare

• Operands of comparison operators

– Two numeric values: compared numerically

– Two nonnumeric values: compared in alphabetical

order

– Number and a string: convert string value to a number

• If conversion fails: value of false returned

JavaScript, Sixth Edition 50

Table 2-9 Comparison operators

Comparison and Conditional Operators

(cont’d.)

JavaScript, Sixth Edition 51

Comparison and Conditional Operators

(cont’d.)

• Conditional operator

– Executes one of two expressions based on

conditional expression results

– Syntax
conditional expression ? expression1 : expression2;

– If conditional expression evaluates to true:

• Then expression1 executes

– If the conditional expression evaluates to false:

• Then expression2 executes

JavaScript, Sixth Edition 52

Comparison and Conditional Operators

(cont’d.)

• Example of conditional operator:

var intVariable = 150;

var result;

intVariable > 100 ?↵
result = "intVariable is greater than 100" :↵
result = "intVariable is less than or equal to 100";

document.write(result);

JavaScript, Sixth Edition 53

Falsy and Truthy Values

• Six falsy values treated like Boolean false:

– ""

– -0

– 0

– NaN

– null

– undefined

• All other values are truthy, treated like Boolean
true

JavaScript, Sixth Edition 54

Logical Operators

• Compare two Boolean operands for equality

Table 2-10 Logical operators

5/19/2015

10

JavaScript, Sixth Edition 55

Table 2-11 Special operators

Special Operators

JavaScript, Sixth Edition 56

Special Operators (cont’d.)

Table 2-12 Values returned by typeof operator

JavaScript, Sixth Edition 57

Understanding Operator Precedence

• Operator precedence

– Order in which operations in an expression evaluate

• Associativity

– Order in which operators of equal precedence

execute

– Left to right associativity

– Right to left associativity

JavaScript, Sixth Edition 58

Understanding Operator Precedence

(cont’d.)

• Evaluating associativity

– Example: multiplication and division operators

• Associativity of left to right

Figure 2-16 Conceptual illustration

of left to right associativity

JavaScript, Sixth Edition 59

Understanding Operator Precedence

(cont’d.)

• Evaluating associativity (cont’d.)

– Example: Assignment operator and compound

assignment operators

• Associativity of right to left

• x = y *= ++x

Figure 2-17 Conceptual illustration

of right-to-left associativity

var x = 3;

var y = 2;

x = y *= ++x;

JavaScript, Sixth Edition 60

Summary

• Functions

– Similar to methods associated with an object

– Pass parameters

– To execute, must be called

• Variable scope

– Where a declared variable can be used

– Global and local variables

• Data type

– Specific category of information a variable contains

– Static typing and dynamic typing

5/19/2015

11

JavaScript, Sixth Edition 61

Summary (cont’d.)

• Numeric data types: integer and floating point

• Boolean values: true and false

• Strings: one or more character surrounded by

double or single quotes

– String operators

– Escape character

• Operators build expressions

• Operator precedence

– Order in which operations in an expression are

evaluated

