
5/19/2015

1

JavaScript, Sixth Edition

Chapter 3

Building Arrays and Controlling Flow

JavaScript, Sixth Edition 2

Objectives

In this chapter, you will:

• Store data in arrays

• Use while statements, do/while statements, and

for statements to repeatedly execute code

• Use continue statements to restart looping

statements

• Use if statements, if/else statements, and

switch statements to make decisions

• Nest one if statement in another

JavaScript, Sixth Edition 3

Storing Data in Arrays

• Array

– Set of data represented by a single variable name

Figure 3-1 Conceptual illustration of an array

JavaScript, Sixth Edition 4

Declaring and Initializing Arrays

• Array literal

– most common way to create an array

– declares a variable and specifies array as content

• Syntax
var name = [value1, value2, value3, …];

• Example:

– Create an array named newsSections containing 4

strings as elements

var newsSections = ["world","local","opinion","sports"]

JavaScript, Sixth Edition 5

Declaring and Initializing Arrays

(cont’d.)

• Element

– Each piece of data contained in an array

• Index

– Element’s numeric position within the array

– Array element numbering

• Starts with index number of zero (0)

• Reference element using its index number

– Example: to reference the 2nd element in the

newsSections array

newsSections[1]

JavaScript, Sixth Edition 6

Declaring and Initializing Arrays

(cont’d.)

• Assigning values to individual array elements

– Include the array index for an individual element

• Example:

– Add value "entertainment" as fifth element of
newsSections array

newsSections[4] = "entertainment";

5/19/2015

2

JavaScript, Sixth Edition 7

Declaring and Initializing Arrays

(cont’d.)

• Can create an array without any elements

– Add new elements as necessary

– Array size can change dynamically
var colors = [];

colors[2] = "yellow";

• JavaScript values assigned to array elements

– Can be different data types

JavaScript, Sixth Edition 8

Accessing Element Information

• To access an element’s value:

– Include brackets and element index

• Examples:

var sec1Head = document.getElementById("section1");

var sec2Head = document.getElementById("section2");

var sec3Head = document.getElementById("section3");

sec1Head.innerHTML = newsSections[0]; // "world"

sec2Head.innerHTML = newsSections[1]; // "local"

sec3Head.innerHTML = newsSections[2]; // "opinion"

JavaScript, Sixth Edition 9

Modifying Elements

• To modify values in existing array elements

– Include brackets and element index

• Can change a value assigned to an array element

• Example:

newsSections[4] = "living";

JavaScript, Sixth Edition 10

Determining the Number of Elements in

an Array

• length property

– Returns the number of elements in an array

• Syntax

name.length;

JavaScript, Sixth Edition 11

Using the Array Object

• JavaScript represents arrays with the Array object

– Contains a special constructor named Array()

• Constructor

– Special function type used as the basis for creating

reference variables

• Syntax

var newsSections = new Array(6);

• Array literals preferred

– Easier

JavaScript, Sixth Edition 12

Referencing Default Collections of

Elements

• getElementsByTagName() method

– Can reference web page element by looking up all

elements of a certain type in document and

referencing one element in that collection

– Resulting collection uses syntax similar to arrays

• Example:

document.getElementsByTagName("li")[2]

5/19/2015

3

JavaScript, Sixth Edition 13

Repeating Code

• Loop statement

– Control flow statement repeatedly executing a

statement or a series of statements

• While a specific condition is true or until a specific

condition becomes true

• Three types of loop statements

– while statements

– do/while statements

– for statements

JavaScript, Sixth Edition 14

while Statements

• while statement

– Repeats a statement or series of statements

• As long as a given conditional expression evaluates to

a truthy value

• Syntax

while (expression) {

statements

}

• Iteration

– Each repetition of a looping statement

JavaScript, Sixth Edition 15

while Statements (cont’d.)

• Counter

– Variable incremented or decremented with each loop

statement iteration

• Examples:

– while statement using an increment operator

– while statement using a decrement operator

– while statement using the *= assignment operator

JavaScript, Sixth Edition 16

var count = 1;

while (count <= 5) {

document.write(count + "
");

count++;

}
document.write("<p>You have printed 5 numbers.</p>");

while Statements (cont’d.)

Result in browser:

JavaScript, Sixth Edition 17

var count = 10;

while (count > 0) {

document.write(count + "
");

count--;

}
document.write("<p>We have liftoff.</p>");

while Statements (cont’d.)

Result in browser:

JavaScript, Sixth Edition 18

var count = 1;

while (count <= 100) {

document.write(count + "
");

count *= 2;
}

while Statements (cont’d.)

Result in browser:

5/19/2015

4

JavaScript, Sixth Edition 19

while Statements (cont’d.)

• Infinite loop

– Loop statement that never ends

• Conditional expression: never false

– Example:

var count = 1;

while (count <= 10) {

window.alert("The number is " + count + ".");
}

JavaScript, Sixth Edition 20

while Statements (cont’d.)

• Example:

– assigning array element values to table cells:

function addColumnHeaders() {

var i = 0;

while (i < 7) {

document.getElementsByTagName("th")↵
[i].innerHTML = daysOfWeek[i];

i++;

}
}

JavaScript, Sixth Edition 21

do/while Statements

• do/while statement

– Executes a statement or statements once

– Then repeats the execution as long as a given

conditional expression evaluates to a truthy value

• Syntax

do {

statements;

} while (expression);

JavaScript, Sixth Edition 22

do/while Statements (cont’d.)

• Examples:

var count = 2;

do {

document.write("<p>The count is equal to " +↵
count + ".</p>");

count++;
} while (count < 2);

var count = 2;

while (count < 2) {

document.write("<p>The count is equal to " +↵
count + ".</p>");

count++;
}

JavaScript, Sixth Edition 23

do/while Statements (cont’d.)

• Example:

– adding days of week with a do/while statement

instead of a while statement

var i = 0;

do {

document.getElementsByTagName("th")[i].innerHTML =↵
daysOfWeek[i];

i++;
} while (i < 7);

JavaScript, Sixth Edition 24

for Statements

• for statement

– Repeats a statement or series of statements

• As long as a given conditional expression evaluates to

a truthy value

– Can also include code that initializes a counter and

changes its value with each iteration

• Syntax

for (counter_declaration; condition;

counter_operation) {

statements
}

5/19/2015

5

JavaScript, Sixth Edition 25

for Statements (cont’d.)

• Steps when JavaScript interpreter encounters a for

loop

1. Counter variable declared and initialized

2. for loop condition evaluated

3. If condition evaluation in Step 2 returns truthy value:

• for loop statements execute, Step 4 occurs, and the

process starts over again with Step 2

If condition evaluation in Step 2 returns falsy value:

• for statement ends

• Next statement following the for statement executes

4. Update statement in the for statement executed

JavaScript, Sixth Edition 26

var brightestStars =

["Sirius", "Canopus", "Arcturus", "Rigel", "Vega"];

for (var count = 0; count < brightestStars.length; count++) {

document.write(brightestStars[count] + "
");
}

Result in browser:

for Statements (cont’d.)

JavaScript, Sixth Edition 27

var count = 1;

while (count < brightestStars.length) {

document.write(count + "
");

count++;
}

for (var count = 1; count < brightestStars.length; count++) {

document.write(count + "
");
}

for Statements (cont’d.)

• for statement

– More efficient than a while statement

• Examples:

JavaScript, Sixth Edition 28

for Statements (cont’d.)

• Example:

– addColumnHeaders() function with a for

statement instead of a do/while statement

function addColumnHeaders() {

for (var i = 0; i < 7; i++) {

document.getElementsByTagName("th")[i].innerHTML↵
= daysOfWeek[i];

}
}

JavaScript, Sixth Edition 29

Using continue Statements to Restart

Execution

• continue statement

– Halts a looping statement

• Restarts the loop with a new iteration

– Used to stop a loop for the current iteration

• Have the loop to continue with a new iteration

• Examples:

– for loop with a continue statement

JavaScript, Sixth Edition 30

for (var count = 1; count <= 5; count++) {

if (count === 3) {

continue;

}

document.write("<p>" + count + "</p>");
}

Result in browser:

Using continue Statements to Restart

Execution (cont’d.)

5/19/2015

6

JavaScript, Sixth Edition 31

Making Decisions

• Decision making

– Process of determining the order in which statements

execute in a program

• Decision-making statements, decision-making

structures, or conditional statements

– Special types of JavaScript statements used for

making decisions

• if statement

– Most common type of decision-making statement

JavaScript, Sixth Edition 32

if Statements

• Used to execute specific programming code

– If conditional expression evaluation returns truthy

value

• Syntax

if (condition) {

statements

}

• }After the if statement executes:

– Any subsequent code executes normally

JavaScript, Sixth Edition 33

if Statements (cont’d.)

• Use a command block to construct a decision-

making structure containing multiple statements

• Command block

– Set of statements contained within a set of braces

JavaScript, Sixth Edition 34

if/else Statements

• Executes one action if the condition is true

– And a different action if the condition is false

• Syntax for an if . . . else statement

if (expression) {

statements

}

else {

statements

}

JavaScript, Sixth Edition 35

if/else Statements (cont’d.)

• Example:

var today = "Tuesday"

if (today === "Monday") {

document.write("<p>Today is Monday</p>");

}

else {

document.write("<p>Today is not Monday</p>");
}

JavaScript, Sixth Edition 36

Nested if and if/else Statements

• Nested decision-making structures

– One decision-making statement contains another

decision-making statement

• Nested if statement

– An if statement contained within an if statement or

within an if/else statement

• Nested if/else statement

– An if/else statement contained within an if

statement or within an if/else statement

5/19/2015

7

JavaScript, Sixth Edition 37

Nested if and if/else Statements

(cont’d.)

• Example:

var salesTotal = 75;

if (salesTotal > 50) {

if (salesTotal < 100) {

document.write("<p>The sales total is↵
between 50 and 100.</p>");

}
}

JavaScript, Sixth Edition 38

else if constructions

• Compact version of nested if/else statements

– combine an else statement with its nested if

statement

– requires fewer characters

– easier to read

JavaScript, Sixth Edition 39

else if constructions (cont'd.)

if (gameLocation[i] === "away") {

paragraphs[1].innerHTML = "@ ";

}

else if (gameLocation[i] === "home") {

paragraphs[1].innerHTML = "vs ";
}

if (gameLocation[i] === "away") {

paragraphs[1].innerHTML = "@ ";

}

else {

if (gameLocation[i] === "home") {

paragraphs[1].innerHTML = "vs ";

}
}

else if version

nested if/else version

JavaScript, Sixth Edition 40

else if constructions (cont'd)

• Used to create backward-compatible event listeners:

var submitButton = document.getElementById("button");

if (submitButton.addEventListener) {

submitButton.addEventListener("click", submitForm,↵
false);

}

else if (submitButton.attachEvent) {

submitButton.attachEvent("onclick", submitForm);
}

JavaScript, Sixth Edition 41

switch Statements

• Controls program flow by executing a specific set of

statements

• Dependent on an expression value

• Compares expression value to value contained
within a case label

• case label

– Represents a specific value

– Contains one or more statements that execute:

• If case label value matches the switch statement’s

expression value

JavaScript, Sixth Edition 42

switch Statements (cont’d.)

• Syntax switch (expression) {

case label:

statements;

break;193
case label:

statements;

break;

...

default:

statements;

break;
}

5/19/2015

8

JavaScript, Sixth Edition 43

switch Statements (cont’d.)

• default label

– Executes when the value returned by the switch

statement expression does not match a case label

• When a switch statement executes:

– Value returned by the expression is compared to
each case label

• In the order in which it is encountered

• break statement

– Ends execution of a switch statement

– Should be final statement after each case label

JavaScript, Sixth Edition 44

function city_location(americanCity) {

switch (americanCity) {

case "Boston":

return "Massachusetts";

break;

case "Chicago":

return "Illinois";

break;

case "Los Angeles":

return "California";

break;

case "Miami":

return "Florida";

break;

case "New York":

return "New York";

break;

default:

return "United States";

break;

}

}
document.write("<p>" + city_location("Boston") + "</p>");

switch Statements (cont’d.)

JavaScript, Sixth Edition 45

Summary

• Array

– Set of data represented by a single variable name

– Index: element’s numeric position within the array

– Can access and modify array elements

– length property

• number of elements in an array

JavaScript, Sixth Edition 46

Summary (cont’d.)

• Loop statements

– while statements, do/while statements, and for
statements

– Iteration: each repetition of a looping statement

– Counter: variable

• Incremented or decremented with each iteration of a
loop statement

– continue statement

• Restarts a loop with a new iteration

JavaScript, Sixth Edition 47

Summary (cont’d.)
• Decision making

– Determining the order in which statements execute in

a program

• May execute in a linear fashion

– if statement,if/else statement, else if

construction

• Nested decision-making structures

– switch statement and case labels

– break statement: used to exit control statements

– Command block

• Set of statements contained within a set of braces

• May repeat the same statement, function, or code

section

