
5/19/2015

1

JavaScript, Sixth Edition

Chapter 4

Debugging and Error Handling

JavaScript, Sixth Edition
JavaScript, Sixth Edition 2

Objectives

When you complete this chapter, you will be able to:

• Recognize error types

• Trace errors with dialog boxes and the console

• Use comments to locate bugs

• Trace errors with debugging tools

• Write code to respond to exceptions and errors

JavaScript, Sixth Edition 3

Introduction to Debugging

• Programming languages have syntax (rules)

• Logic

– Order in which various program parts run (execute)

• Bug

– Any program error 

• Causes program to function incorrectly due to 

incorrect syntax or flaws in logic

• Debugging

– Process of tracing and resolving errors in a program

JavaScript, Sixth Edition 4

Understanding Syntax Errors

• Syntax errors

– Occur when interpreter fails to recognize code

– Causes

• Incorrect use of JavaScript code

• References to non-existent objects, methods, variables

JavaScript, Sixth Edition 5

Handling Run-Time Errors

• Run-time errors

– Occur when interpreter encounters a problem while 

program executing

• Not necessarily JavaScript language errors

– Occur when interpreter encounters code it cannot 

execute

– Run-time error can be caused by a syntax error

JavaScript, Sixth Edition 6

Identifying Logic Errors

• Logic errors

– Flaw in a program’s design

• Prevents program from running as anticipated

– “Logic” reference

• Execution of program statements and procedures in the 

correct order to produce the desired results

– Example: multiplying instead of dividing
var divisionResult = 10 * 2;

document.write("Ten divided by two is equal to "↵

+ divisionResult);



5/19/2015

2

JavaScript, Sixth Edition 7

Identifying Logic Errors (cont’d.)

– Example: infinite loop
for (var count = 10; count >= 0; count) {

document.write("We have liftoff in " + count);

}

– Example: infinite loop corrected
for (var count = 10; count >= 0; count--) {

document.write("We have liftoff in " + count);

}

JavaScript, Sixth Edition 8

Interpreting Error Messages

• First line of defense in locating bugs

– Browser console displays

• Line number where error occurred

• Error description

• Run-time errors 

– Error messages generated by a web browser

• Can be caused by syntax errors but not by logic errors

– Example:

function missingClosingBrace() {

var message = "This function is missing a closing brace.";
window.alert(message);

JavaScript, Sixth Edition 9

Figure 4-3 Firefox error messages

Interpreting Error Messages (cont’d.)

JavaScript, Sixth Edition 10

Interpreting Error Messages (cont’d.)

• Error message

– Displays error’s general location in a program

• Not an exact indicator

• Browsers do not strictly enforce JavaScript syntax

• Mitigating bugs in JavaScript programs

– Always use good syntax

– Thoroughly test with every browser type, version

• Test browser if used by more than one percent of the 
market

JavaScript, Sixth Edition 11

Using Basic Debugging Techniques

• Syntax errors can be difficult to pinpoint

• A few common techniques are helpful in tracking 

down bugs

JavaScript, Sixth Edition 12

Tracing Errors with the 
window.alert() Method

• Tracing

– Examining statements in an executing program

• window.alert() method

– A useful way to trace JavaScript code

– Place at different points within program

• Used to display variable or array contents or value 
returned from a function

• Use multiple window.alert() methods

– Check values as code executes

• Example: function not returning correct result of 485

– Returning 5169107



5/19/2015

3

JavaScript, Sixth Edition 13

function calculatePay() {

var payRate = 15; numHours = 40;

var grossPay = payRate * numHours;

window.alert(grossPay);

var federalTaxes = grossPay * .06794;

var stateTaxes = grossPay * .0476;

var socialSecurity = grossPay * .062;

var medicare = grossPay * .0145;

var netPay = grossPay - federalTaxes;

netPay *= stateTaxes;

netPay *= socialSecurity;

netPay *= medicare;

return netPay;
}

Tracing Errors with the 
window.alert() Method (cont’d.)

JavaScript, Sixth Edition 14

Tracing Errors with the 
window.alert() Method (cont’d.)

• Drawback

– Must close each dialog box for code to continue 

executing

• Use selectively at key points

• Place debugging code at different indent level to 

distinguish from program code

JavaScript, Sixth Edition 15

Tracing Errors with the 
console.log() Method

• Trace a bug by analyzing a list of values

• Logging

– writing values directly to the console using the 
console.log() method

– syntax: console.log(value);

– can log string literal, variable value, or combination

• Example

– calculatePay() function

JavaScript, Sixth Edition 16

Tracing Errors with the 
console.log() Method (cont’d.)
function calculatePay() {

var payRate = 15; numHours = 40;

var grossPay = payRate * numHours;

console.log("grossPay is " + grossPay);

var federalTaxes = grossPay * .06794;

var stateTaxes = grossPay * .0476;

var socialSecurity = grossPay * .062;

var medicare = grossPay * .0145;

var netPay = grossPay - federalTaxes;

console.log("grossPay minus federalTaxes is " + netPay);

netPay *= stateTaxes;

console.log("netPay minus stateTaxes is " + netPay);

netPay *= socialSecurity;

console.log("netPay minus socialSecurity is " + netPay);

netPay *= medicare;

console.log("netPay minus medicare is " + netPay);

return netPay;

}
calculatePay();

JavaScript, Sixth Edition 17

Tracing Errors with the 
console.log() Method (cont’d.)

Figure 4-11 Contents of the console after executing the calculatePay() function 

JavaScript, Sixth Edition 18

Tracing Errors with the 
console.log() Method (cont’d.)

• Driver program

– simplified, temporary program

– contains only the code you are testing



5/19/2015

4

JavaScript, Sixth Edition 19

Using Comments to Locate Bugs

• Another method of locating bugs

– “Comment out” problematic lines

• Helps isolate statement causing the error

• When error message first received

– Start by commenting out only the statement specified 

by the line number in the error message

– Continue commenting lines until error eliminated

JavaScript, Sixth Edition 20

Combining Debugging Techniques

• Combine debugging techniques

– Aid in search for errors

• Example:

– Use comments combined with an alert box or log 
message to trace errors in the calculatePay()

function

JavaScript, Sixth Edition 21

function calculatePay() {

var payRate = 15;

var numHours = 40;

var grossPay = payRate * numHours;

window.alert(grossPay);

// var federalTaxes = grossPay * .06794;

// var stateTaxes = grossPay * .0476;

// var socialSecurity = grossPay * .062;

// var medicare = grossPay * .0145;

// var netPay = grossPay – federalTaxes;

// netPay *= stateTaxes;

// netPay *= socialSecurity;

// netPay *= medicare;

// return Math.round(netPay);

}

Combining Debugging Techniques 

(cont’d.)

JavaScript, Sixth Edition 22

Dependencies

• Relationship in which one statement depends on 

another statement executing successfully

• Can make debugging more challenging

• Important to retest program after fixing a bug to 

ensure other parts aren't affected by change

JavaScript, Sixth Edition 23

Tracing Errors with Debugging Tools

• Available in current versions of all modern browsers

– Internet Explorer (IE)

– Chrome

– Firefox

• Accessible through same panel that opens when 

you use the console

JavaScript, Sixth Edition 24

Tracing Errors with Debugging Tools 

(cont’d.)

• Examining code manually

– Usually first step taken with a logic error

– Works fine with smaller programs

• Debugging tools

– Help trace each line of code

– More efficient method of finding and resolving logic 

errors



5/19/2015

5

JavaScript, Sixth Edition 25

Understanding the IE, Firefox, and 

Chrome Debugger Windows

• Using Debugger Windows

– Open a document to debug in a browser

– Use keyboard shortcut or menu to open debugger

Table 4-1: Steps to open debuggers in IE, Firefox, and Chrome
JavaScript, Sixth Edition 26

Understanding the IE, Firefox, and 

Chrome Debugger Windows (cont’d.)

• Debugger window

– Usually separate pane attached to bottom of browser 

window

– Can also detach pane into separate window

JavaScript, Sixth Edition 27

Understanding the IE, Firefox, and 

Chrome Debugger Windows (cont’d.)

• Internet Explorer

– Shows HTML code by default

– Click View sources to select a different file

JavaScript, Sixth Edition 28

Understanding the IE, Firefox, and 

Chrome Debugger Windows (cont’d.)

• Firefox

– Lists JavaScript files alphabetically

– Click a filename to see its contents

JavaScript, Sixth Edition 29

Understanding the IE, Firefox, and 

Chrome Debugger Windows (cont’d.)

• Chrome

– Displays no files by default

– press Ctrl + O (Win) or command + O (Mac) to select 

from list of associated files

JavaScript, Sixth Edition 30

Setting Breakpoints

• Break mode

– Temporary suspension of program execution

– Used to monitor values and trace program execution

• Breakpoint

– Statement where execution enters break mode

• When program paused at a breakpoint

– Use debug tools to trace program execution



5/19/2015

6

JavaScript, Sixth Edition 31

Setting Breakpoints (cont’d.)

• To set a breakpoint

– Click the line number of the statement where 

execution should stop

• Resume button (Firefox/Chrome), Continue button 

(IE)

– Executes rest of the program normally or until another 

breakpoint encountered

JavaScript, Sixth Edition 32

Figure 4-20 tuba.js execution stopped at the line 63 breakpoint 

Setting Breakpoints (cont’d.)

JavaScript, Sixth Edition 33

Clearing Breakpoints

• To clear a breakpoint

– Click the line number 

• To clear all breakpoints

– Right-click any breakpoint

– Click "Remove all breakpoints" or "Delete all"

JavaScript, Sixth Edition 34

Stepping Through Your Scripts

• Stepping into

– Executes an individual line of code

• Pauses until instructed to continue

– Debugger stops at each line within every function

• Stepping over

– Allows skipping of function calls

– Program still executes function stepped over

• Stepping out

– Executes all remaining code in the current function

– Debugger stops at next statement in the calling 
function

JavaScript, Sixth Edition 35

Tracing Variables and Expressions

• Variables list

– Displays all local variables within the currently 

executing function

– Shows how different values in the currently executing 

function affect program execution

• Watch list

– Monitors variables and expressions in break mode

JavaScript, Sixth Edition 36

Tracing Variables and Expressions 

(cont’d.)

– To access watch list

• IE

– Displayed by default on right side of pane

– In break mode, local and global variables displayed

• Firefox

– Click Expand Panes button

– Shows watch and variables list on right side of pane

• Chrome

– Displayed by default on right side of pane



5/19/2015

7

JavaScript, Sixth Edition 37

Tracing Variables and Expressions 

(cont’d.)

– To add an expression to the watch list

• Locate an instance of the expression in the program

• Select it and copy it to the Clipboard

• Click "Click to add" (IE) or "Add watch expression 

(Firefox or Chrome)

• Paste expression from Clipboard

• Press Enter

JavaScript, Sixth Edition 38

Examining the Call Stack

• Call stack

– Ordered lists of which procedures (functions, 

methods, event handlers) have been called but 

haven't finished executing

• Each time a program calls a procedure:

– Procedure added to top of the call stack 

JavaScript, Sixth Edition 39

Examining the Call Stack

• IE and Chrome

– Call stack list displayed to right of code

• Firefox

– Call stack list displayed above code

JavaScript, Sixth Edition 40

Handling Exceptions and Errors

• Bulletproofing

– Writing code to anticipate and handle potential 

problems

• One bulletproofing technique

– Validate submitted form data

• Exception handling

– Allows programs to handle errors as they occur in 

program execution

• Exception

– Error occurring in a program

JavaScript, Sixth Edition 41

Throwing Exceptions

• Execute code containing an exception in a try

statement

• throw statement

– Specifies an error message in case an error that 
occurs within a try block

try {

var lastName = document.getElementById("lName").value;

if (lastName === "") {

throw "Please enter your last name.";

}
}

JavaScript, Sixth Edition 42

Catching Exceptions

• Use a catch statement

– Handles, or “catches” the error

• Syntax:

catch(error) {

statements;

}

• Example:

catch(lNameError) {

window.alert(lNameError);

return false;

}



5/19/2015

8

JavaScript, Sixth Edition 43

Executing Final Exception Handling 

Tasks

• finally statement

– Executes regardless of whether its associated try

block throws an exception

– Used to perform some type of cleanup

• Or any necessary tasks after code evaluated with a 
try statement

JavaScript, Sixth Edition 44

Implementing Custom Error Handling

• Primary purpose of exception handling

– Prevent users from seeing errors occurring in 

programs

– Provide graceful way to handle errors

• Reason for using exception handling with JavaScript

– Evaluate user input

• Programmers may write their own error-handling 

code

– Can write user-friendly messages

– Provides greater control over any errors

JavaScript, Sixth Edition 45

Implementing Custom Error Handling 

(cont’d.)

• Catching errors with the error event

– Executes whenever error occurs on a Web page

– Name of function to handle JavaScript errors

• Assigned as event listener for error event

– Preventing the Web browser from executing its own 

error handling functionality

• Return return a value of true from the error event 

handler function

JavaScript, Sixth Edition 46

Implementing Custom Error Handling 

(cont’d.)

• Writing custom error-handling functions

– JavaScript interpreter automatically passes three 

arguments to the custom error handling function

• Error message, URL, line number

– Use these values in custom error handling 

function

• By adding parameters to the function definition

– Use parameters in the function

• Show a user the location of any JavaScript errors 

that may occur

JavaScript, Sixth Edition 47

Additional Debugging Techniques

• Includes

– Checking HTML elements

– Analyzing logic

– Testing statements with console command line

– Using the debugger statement

– Executing code in strict mode

– Linting

– Reloading a Web page

JavaScript, Sixth Edition 48

Checking HTML Elements

• If a bug cannot be located using methods described 

in this chapter:

– Perform a line-by-line analysis of the HTML code

– Ensure all necessary opening and closing tags 

included

• Use code editor specialized for web development

– Highlights syntax errors as you type

• Use the W3C Markup Validation Service to validate 

a Web page



5/19/2015

9

JavaScript, Sixth Edition 49

Analyzing Logic

• Some JavaScript code errors stem from logic 

problems

– Can be difficult to spot using tracing techniques

• Analyze each statement on a case-by-case basis

JavaScript, Sixth Edition 50

Testing Statements with the Console 

Command Line

• Console command line

– Testing and executing JavaScript statements

• Without HTML document or JavaScript source file

– Useful if trying to construct the correct syntax for a 

mathematical expression

• Enter JavaScript statement at command line in web 

browser’s console

• Including multiple statements at the command line

– Separate statements with a semicolon

JavaScript, Sixth Edition 51

Using the debugger statement

• When you include the debugger statement in your 

code

– web browser stops executing JavaScript code when it 
reaches the debugger statement

– equivalent of a breakpoint that's part of your 

JavaScript code

JavaScript, Sixth Edition 52

Using Strict Mode

• Strict mode

– Removes some features from JavaScript

– Requires more stringent syntax for other features

• Example: must always use var to declare variables

• Many removed or altered features in strict mode are 

known to cause hard to find bugs

• Include statement "use strict";

– Including at start of script section requests strict mode 

for all code in that section

– Including at start of code block in function requests 

strict mode just for that function

JavaScript, Sixth Edition 53

Linting

• Running code through a program that flags some 

common issues that may affect code quality

• jslint is a commonly used linting program

• Similar result to using strict mode, but generates a 

report containing line numbers 

JavaScript, Sixth Edition 54

Reloading a Web Page

• Usually click the browser Reload or Refresh button

• Web browser cannot always completely clear its 

memory

– Remnants of an old bug may remain

– Force web page reload

• Hold Shift key and click the browser’s Reload or 

Refresh button

• May need to close browser window completely

• May need to delete frequently visited web pages



5/19/2015

10

JavaScript, Sixth Edition 55

Summary

• Three types of program errors

– Syntax errors, run-time errors, logic errors

• Error messages

– First line of defense in locating bugs

• Tracing

– Examination of individual statements in an executing 
program

• Using console.log() method to trace bugs

– Helpful to use a driver program

• Browser debugging tools

JavaScript, Sixth Edition 56

Summary (cont’d.)

• Break mode

– Temporary suspension of execution to monitor values 

and trace execution

• Breakpoint: statement in the code at which program 

execution enters break mode

• Stepping into, stepping over, and stepping out

• Variables list and watch list

• Call stack

– List of procedures that have started but not finished

JavaScript, Sixth Edition 57

Summary (cont’d.)

• Bulletproofing

– Writing code to anticipate, handle potential problems

• Exception handling

• try, throw, catch, finally statements

• JavaScript includes an error event

– Executes whenever an error occurs on a web page

• Additional debugging methods and techniques

– Checking HTML elements, analyzing logic, console 
command line, debugger statement, strict mode, 

linting, and reloading a web page


