~% COURSE TECHNOLOGY

A~ CENGAGE Learning

JavaScript, Sixth Edition

Chapter 4
Debugging and Error Handling

5/19/2015

Objectives

When you complete this chapter, you will be able to:
» Recognize error types

» Trace errors with dialog boxes and the console

» Use comments to locate bugs

» Trace errors with debugging tools

* Write code to respond to exceptions and errors

JavaScript, Sixth Edition 2

Introduction to Debugging

* Programming languages have syntax (rules)

* Logic
— Order in which various program parts run (execute)
* Bug

— Any program error
« Causes program to function incorrectly due to
incorrect syntax or flaws in logic

+ Debugging
— Process of tracing and resolving errors in a program

JavaScript, Sixth Edition

Understanding Syntax Errors

» Syntax errors
— Occur when interpreter fails to recognize code
— Causes
« Incorrect use of JavaScript code
« References to non-existent objects, methods, variables

Javascript, Sixth Edition 4

Handling Run-Time Errors

* Run-time errors
— Occur when interpreter encounters a problem while
program executing
» Not necessarily JavaScript language errors

— Occur when interpreter encounters code it cannot
execute

— Run-time error can be caused by a syntax error

JavaScript, Sixth Edition

Identifying Logic Errors

* Logic errors
— Flaw in a program’ s design
« Prevents program from running as anticipated
— “Logic” reference
« Execution of program statements and procedures in the
correct order to produce the desired results
— Example: multiplying instead of dividing
var divisionResult = 10 * 2;
document.write("Ten divided by two is equal to "¢
+ divisionResult);

JavaScript, Sixth Edition 6

5/19/2015

Identifying Logic Errors (cont’ d.) Interpreting Error Messages
— Example: infinite loop * First line of defense in locating bugs
for (var count = 10; count >= 0; count) { — Browser console displays
document.write("We have liftoff in " + count);

} « Line number where error occurred
— Example: infinite loop corrected + Error description
for (var count = 10; count >= 0; count--) { * Run-time errors
document.write("We have liftoff in * + count); — Error messages generated by a web browser
} < Can be caused by syntax errors but not by logic errors
— Example:

function missingClosingBrace() {
var message = "This function is missing a closing brace.";
window.alert(message);

JavaScript, Sixth Edition 7 JavaScript, Sixth Edition 8

Interpreting Error Messages (cont’ d.) Interpreting Error Messages (cont’ d.)

* Error message
— Displays error’ s general location in a program
- « Not an exact indicator
o » Browsers do not strictly enforce JavaScript syntax

5sing } after function body

sissingtlosingbrace is not detined + Mitigating bugs in JavaScript programs
— Always use good syntax
— Thoroughly test with every browser type, version

« Test browser if used by more than one percent of the
market

Figure 4-3 Firefox error messages

JavaScript, Sixth Edition 9 JavaScript, Sixth Edition 10

Tracing Errors with the

Using Basic Debugging Techniques window.alert () Method

» Syntax errors can be difficult to pinpoint » Tracing
« A few common techniques are helpful in tracking — Examining statements in an executing program
down bugs * window.alert () method

— A useful way to trace JavaScript code
— Place at different points within program

« Used to display variable or array contents or value
returned from a function

* Use multiple window.alert () methods
— Check values as code executes

» Example: function not returning correct result of 485
— Returning 5169107

JavaScript, Sixth Edition u JavaScript, Sixth Edition 12

5/19/2015

Tracing Errors with the
window.alert () Method (cont’d.)

function calculatePay() {
var payRate = 15; numHours = 40;
var grossPay = payRate * numHours;
window.alert(grossPay);
var federalTaxes = grossPay * .06794;
var stateTaxes = grossPay * .0476;
var socialSecurity = grossPay *.062;
var medicare = grossPay * .0145;
var netPay = grossPay - federalTaxes;
netPay = stateTaxes;
netPay “= socialSecurity;
netPay “= medicare;
return netPay;

JavaScript, Sixth Edition

Tracing Errors with the
window.alert () Method (cont’ d.)

» Drawback

— Must close each dialog box for code to continue
executing

» Use selectively at key points

» Place debugging code at different indent level to
distinguish from program code

JavaScript, Sixth Edition

14
Tracing Errors with the Tracing Errors with the
’
console.log () Method console.log () Method (cont’ d.)
. B function calculatePay() {
+ Trace a bug by analyzing a list of values 1 payRate - 15: numHours - 40;
A var grossPay = payRate * numHours;
* LOggmg console.log("grossPay is " + grossPay);
_ . B H var federalTaxes = grossPay * .06794;
writing values directly to the console using the o StateTaxes - grasapay - 0476,
console.log () method var socialSecurity = grossPay * .062;
) . ar medicare = grossPay * .0145;
— syntax: console.log(value); var netPay = grossPay - federalTaxes;
_ ; B : A o console.log("grossPay minus federalTaxes is " + netPay);
can log string literal, variable value, or combination netPay - stateTaxes;
. EXample console.log("netPay minus stateTaxes is " + netPay);
netPay *= socialSecurity;
- calculatePay () function console.log("netPay minus socialSecurity is * + netPay);
netPay *= medicare;
console.log("netPay minus medicare is " + netPay);
return netPay;
}
calculatePay();
JavaScript, Sixth Edition 15 JavaScript, Sixth Edition 16

Tracing Errors with the
console.log () Method (cont’d.)

ssPay is 600"

0ssPay minus federalTaxes is 559.236"
etPay minus stateTaxes is 15971.78016"
"netPay minus socialSecurity is 594150.221952"
“netPay minus medicare is 5169106.930982401"

Figure 4-11 Contents of the console after executing the calculatePay () function

JavaScript, Sixth Edition

Tracing Errors with the
console.log () Method (cont’d.)
+ Driver program

— simplified, temporary program
— contains only the code you are testing

JavaScript, Sixth Edition 18

5/19/2015

Using Comments to Locate Bugs

» Another method of locating bugs

— “Comment out” problematic lines
» Helps isolate statement causing the error
* When error message first received

— Start by commenting out only the statement specified
by the line number in the error message

— Continue commenting lines until error eliminated

JavaScript, Sixth Edition

Combining Debugging Techniques

» Combine debugging techniques
— Aid in search for errors
» Example:

— Use comments combined with an alert box or log
message to trace errors in the calculatePay ()
function

JavaScript, Sixth Edition 20

Combining Debugging Techniques
(cont’ d.)

function calculatePay() {
var payRate = 15;
var numHours = 40;
var grossPay = payRate * numHours;
window.alert(grossPay);
I var federalTaxes = grossPay * .06794
Il var stateTaxes = grossPay * .0476;
Il var socialSecurity = grossPay * .062;
Il var medicare = grossPay * .0145;
I var netPay = grossPay - federalTaxes;
/I netPay *= stateTaxes;
/I netPay *= socialSecurity;
/I netPay *= medicare:
/I return Math.round(netPay)

JavaScript, Sixth Edition

Dependencies

Relationship in which one statement depends on
another statement executing successfully

+ Can make debugging more challenging

+ Important to retest program after fixing a bug to
ensure other parts aren't affected by change

Javascript, Sixth Edition 22

Tracing Errors with Debugging Tools

» Available in current versions of all modern browsers
— Internet Explorer (IE)
— Chrome
— Firefox

» Accessible through same panel that opens when
you use the console

JavaScript, Sixth Edition

Tracing Errors with Debugging Tools
(cont’d.)

+ Examining code manually
— Usually first step taken with a logic error
— Works fine with smaller programs

» Debugging tools
— Help trace each line of code

— More efficient method of finding and resolving logic
errors

JavaScript, Sixth Edition 24

5/19/2015

Understanding the IE, Firefox, and
Chrome Debugger Windows

* Using Debugger Windows
— Open a document to debug in a browser

— Use keyboard shortcut or menu to open debugger
BROWSER * KEYBOARD SHORTCUT : MENU STEPS

Intemet Explorer 9+ F12, then Ctrl + 3 Click the Tools icon, click F12 developer
tools on the menu, then in the window
that opens, click the Debugger bution

Firefox Ctrl -+ Shift + § Win) or Click the Dpen menu button, click
aption + command + § (Mac) Developer, and then click Debugger

Chrome Ctrl + Shift + J (Winj or Click the Customize and control
option + command -+ J (Mac), Google Chrome button, click Tools, click
then in the window that opens, click JavaScript Console, then in the window
the Sources button that opens, click the Sources button

Table 4-1: Steps to open debuggers in IE, Firefox, and Chrome
JavaScript, Sixth Edition 25

Understanding the IE, Firefox, and
Chrome Debugger Windows (cont’ d.)

» Debugger window

— Usually separate pane attached to bottom of browser
window

— Can also detach pane into separate window

JavaScript, Sixth Edition 26

Understanding the IE, Firefox, and
Chrome Debugger Windows (cont’ d.)

* Internet Explorer
— Shows HTML code by default
— Click View sources to select a different file

JavaScript, Sixth Edition 27

Understanding the IE, Firefox, and
Chrome Debugger Windows (cont’ d.)
» Firefox

— Lists JavaScript files alphabetically
— Click a filename to see its contents

Firefox

Javascript, Sixth Edition 28

Understanding the IE, Firefox, and
Chrome Debugger Windows (cont’ d.)
» Chrome

— Displays no files by default

— press Ctrl + O (Win) or command + O (Mac) to select
from list of associated files

€% a0 0

JavaScript, Sixth Edition 29

Setting Breakpoints

+ Break mode

— Temporary suspension of program execution

— Used to monitor values and trace program execution
+ Breakpoint

— Statement where execution enters break mode
* When program paused at a breakpoint

— Use debug tools to trace program execution

JavaScript, Sixth Edition 30

5/19/2015

Setting Breakpoints (cont’ d.)

* To set a breakpoint

— Click the line number of the statement where
execution should stop

* Resume button (Firefox/Chrome), Continue button
(IE)

— Executes rest of the program normally or until another
breakpoint encountered

JavaScript, Sixth Edition

Setting Breakpoints (cont’ d.)
et Explrr /mm

Figure 4-20 tuba.js execution stopped at the line 63 breakpoint

JavaScript, Sixth Edition 32

Clearing Breakpoints

» To clear a breakpoint
— Click the line number
» To clear all breakpoints
— Right-click any breakpoint
— Click "Remove all breakpoints" or "Delete all"

JavaScript, Sixth Edition

Stepping Through Your Scripts

+ Stepping into

— Executes an individual line of code

« Pauses until instructed to continue

— Debugger stops at each line within every function
» Stepping over

— Allows skipping of function calls

— Program still executes function stepped over
+ Stepping out

— Executes all remaining code in the current function

— Debugger stops at next statement in the calling

function

JavaScript, Sixth Edition 34

Tracing Variables and Expressions

* Variables list

— Displays all local variables within the currently
executing function

— Shows how different values in the currently executing
function affect program execution

* Watch list
— Monitors variables and expressions in break mode

JavaScript, Sixth Edition

Tracing Variables and Expressions
(cont’d.)

— To access watch list

< IE

— Displayed by default on right side of pane

— In break mode, local and global variables displayed
« Firefox

— Click Expand Panes button

— Shows watch and variables list on right side of pane
« Chrome

— Displayed by default on right side of pane

JavaScript, Sixth Edition 36

5/19/2015

Tracing Variables and Expressions
(cont’d.)

— To add an expression to the watch list
« Locate an instance of the expression in the program
« Select it and copy it to the Clipboard

« Click "Click to add" (IE) or "Add watch expression
(Firefox or Chrome)

« Paste expression from Clipboard
* Press Enter

JavaScript, Sixth Edition 37

Examining the Call Stack

+ Call stack

— Ordered lists of which procedures (functions,
methods, event handlers) have been called but
haven't finished executing

» Each time a program calls a procedure:
— Procedure added to top of the call stack

JavaScript, Sixth Edition 38

Examining the Call Stack

* |IE and Chrome

— Call stack list displayed to right of code
» Firefox

— Call stack list displayed above code

JavaScript, Sixth Edition 39

Handling Exceptions and Errors

 Bulletproofing

— Writing code to anticipate and handle potential
problems

* One bulletproofing technique
— Validate submitted form data
» Exception handling

— Allows programs to handle errors as they occur in
program execution

+ Exception
— Error occurring in a program

JavaScript, Sixth Edition 40

Throwing Exceptions

« Execute code containing an exceptionina try
statement
* throw statement

— Specifies an error message in case an error that
occurs within a try block

ry {
ar lastName = document.getElementByld("IName”).value;
if (lastName === "") {
throw "Please enter your last name.";
}
}

JavaScript, Sixth Edition 41

Catching Exceptions

* Use a catch statement
— Handles, or “catches” the error
* Syntax:
catch(error) {
statements;
}
+ Example:
catch(INameError) {
window.alert(INameError);
return false;

JavaScript, Sixth Edition 42

5/19/2015

Executing Final Exception Handling
Tasks

« finally statement

— Executes regardless of whether its associated try
block throws an exception

— Used to perform some type of cleanup

» Or any necessary tasks after code evaluated with a
try statement

JavaScript, Sixth Edition

Implementing Custom Error Handling

* Primary purpose of exception handling

— Prevent users from seeing errors occurring in
programs

— Provide graceful way to handle errors

» Reason for using exception handling with JavaScript
— Evaluate user input

* Programmers may write their own error-handling
code

— Can write user-friendly messages
— Provides greater control over any errors

JavaScript, Sixth Edition 44

Implementing Custom Error Handling
(cont’ d.)

+ Catching errors with the error event
— Executes whenever error occurs on a Web page
— Name of function to handle JavaScript errors
« Assigned as event listener for error event

— Preventing the Web browser from executing its own
error handling functionality

» Return return a value of true from the error event
handler function

JavaScript, Sixth Edition

Implementing Custom Error Handling
(cont’ d.)

* Writing custom error-handling functions
— JavaScript interpreter automatically passes three
arguments to the custom error handling function
» Error message, URL, line number

— Use these values in custom error handling
function

* By adding parameters to the function definition
— Use parameters in the function

» Show a user the location of any JavaScript errors
that may occur

JavaScript, Sixth Edition 46

Additional Debugging Techniques

* Includes
— Checking HTML elements
— Analyzing logic
— Testing statements with console command line
— Using the debugger statement
— Executing code in strict mode
— Linting
— Reloading a Web page

JavaScript, Sixth Edition

Checking HTML Elements

+ If a bug cannot be located using methods described
in this chapter:
— Perform a line-by-line analysis of the HTML code
— Ensure all necessary opening and closing tags
included
» Use code editor specialized for web development
— Highlights syntax errors as you type

* Use the W3C Markup Validation Service to validate
a Web page

JavaScript, Sixth Edition 48

5/19/2015

Analyzing Logic

» Some JavaScript code errors stem from logic
problems

— Can be difficult to spot using tracing techniques
* Analyze each statement on a case-by-case basis

JavaScript, Sixth Edition 49

Testing Statements with the Console
Command Line

+ Console command line
— Testing and executing JavaScript statements
» Without HTML document or JavaScript source file

— Useful if trying to construct the correct syntax for a
mathematical expression

» Enter JavaScript statement at command line in web
browser’ s console

* Including multiple statements at the command line
— Separate statements with a semicolon

JavaScript, Sixth Edition 50

Using the debugger statement

* When you include the debugger statement in your
code

— web browser stops executing JavaScript code when it
reaches the debugger statement

— equivalent of a breakpoint that's part of your
JavaScript code

JavaScript, Sixth Edition 51

Using Strict Mode

* Strict mode
— Removes some features from JavaScript
— Requires more stringent syntax for other features
« Example: must always use var to declare variables
» Many removed or altered features in strict mode are
known to cause hard to find bugs
* Include statement "use strict";

— Including at start of script section requests strict mode
for all code in that section

— Including at start of code block in function requests
strict mode just for that function

JavaScript, Sixth Edition 52

Linting
* Running code through a program that flags some
common issues that may affect code quality
* jslintis a commonly used linting program

» Similar result to using strict mode, but generates a
report containing line numbers

JavaScript, Sixth Edition 53

Reloading a Web Page

Usually click the browser Reload or Refresh button

* Web browser cannot always completely clear its
memory

— Remnants of an old bug may remain
— Force web page reload

« Hold Shift key and click the browser’ s Reload or
Refresh button

* May need to close browser window completely
* May need to delete frequently visited web pages

JavaScript, Sixth Edition 54

5/19/2015

Summary

* Three types of program errors
— Syntax errors, run-time errors, logic errors
* Error messages
— First line of defense in locating bugs
» Tracing
— Examination of individual statements in an executing
program
* Using console.log () method to trace bugs
— Helpful to use a driver program
» Browser debugging tools

JavaScript, Sixth Edition 56

Summary (cont’ d.)

* Break mode

— Temporary suspension of execution to monitor values
and trace execution

» Breakpoint: statement in the code at which program
execution enters break mode

+ Stepping into, stepping over, and stepping out
Variables list and watch list

Call stack

— List of procedures that have started but not finished

JavaScript, Sixth Edition 56

Summary (cont’ d.)

» Bulletproofing
— Writing code to anticipate, handle potential problems
» Exception handling
e try, throw, catch, finally Statements
» JavaScriptincludes an error event
— Executes whenever an error occurs on a web page
» Additional debugging methods and techniques

— Checking HTML elements, analyzing logic, console
command line, debugger statement, strict mode,
linting, and reloading a web page

JavaScript, Sixth Edition 57

10

