
5/19/2015

1

JavaScript, Sixth Edition

Chapter 6

Enhancing and Validating Forms

JavaScript, Sixth Edition 2

Objectives

When you complete this chapter, you will be able to:

• Enhance form usability with JavaScript

• Customize browser-based HTML validation

• Implement custom validation to check for errors and 

display error messages

JavaScript, Sixth Edition 3

Using JavaScript with Forms

• Validation

– checking that form information provided by users 

conforms to data rules

• form object

– Represents a form in an HTML document

– Used to access form and its data

JavaScript, Sixth Edition 4

Table 6-1 Properties of form objects

Using JavaScript with Forms (cont’d.)

Table 6-3 Methods of form objects

Table 6-2 Event of form objects

JavaScript, Sixth Edition 5

Using JavaScript with Forms (cont'd.)

• Common elements for collecting form data:

– input

– select

– option

– textarea

– button

JavaScript, Sixth Edition 6

Table 6-4 Properties of elements within forms

Working with Input Fields (cont’d.)



5/19/2015

2

JavaScript, Sixth Edition 7

Table 6-5 Methods of elements within forms

Working with Input Fields (cont’d.)

Table 6-6 Events of elements within forms

JavaScript, Sixth Edition 8

Referencing Forms and Form Elements

• Can use getElementsByTagName() method:

getElementsByTagName("form")[0]

• Document object includes a forms[] array

– Contains all forms on a web page

• form object has an elements[] array

JavaScript, Sixth Edition 9

Referencing Forms and Form Elements 

(cont’d.)

• elements[] array

– Contains objects representing each control in a form

• Reference form index number in the forms[] array

– Followed by the appropriate element index number 
from the elements[] array

JavaScript, Sixth Edition 10

Improving Form Usability

• Before validation

– Can reduce amount of validation necessary

JavaScript, Sixth Edition 11

Designing Forms to Collect More 

Accurate Content

• Replace input boxes with other fields that present 

limited choices

JavaScript, Sixth Edition 12

Designing Forms to Collect More 

Accurate Content (cont'd.)

Table 6-7 Selected form elements for providing limited choices



5/19/2015

3

JavaScript, Sixth Edition 13

Designing Forms to Collect More 

Accurate Content (cont'd.)

Figure 6-3 Sample fieldset updated with option buttons and selection lists

Figure 6-2 Sample fieldset containing input elements

JavaScript, Sixth Edition 14

Programming Forms to Increase  

Content Accuracy

• Assistive functions

– Reduce likelihood of user errors

– Prevent users from entering erroneous data

• Removing default values from selection lists

– Can set default value for selection list in HTML

• Only to one of the options

– JavaScript can set selectedIndex property to -1

• Corresponds to no selection

JavaScript, Sixth Edition 15

Programming Forms to Increase 

Content Accuracy (cont'd.)

Table 6-8 select element properties

JavaScript, Sixth Edition 16

Programming Forms to Increase  

Content Accuracy (cont'd.)

• Dynamically Updating Selection List Values

– Can add or remove option elements from a select

element using node methods

• Can change list options based on selection in another 

field

JavaScript, Sixth Edition 17

Programming Forms to Increase  

Content Accuracy (cont'd.)

Table 6-9 Properties of option elements

JavaScript, Sixth Edition 18

Programming Forms to Increase  

Content Accuracy (cont'd.)

Figure 6-5 Diagram of function for dynamically updating selection list values



5/19/2015

4

JavaScript, Sixth Edition 19

Programming Forms to Increase  

Content Accuracy (cont'd.)

• Adding Placeholder Text for Older Browsers

– placeholder attribute of input and textarea

elements

• Supported by modern browsers

• Can recreate behavior with JavaScript for older 

browsers:

– Add placeholder text when page finishes loading

– Remove placeholder text when user selects field

– Add back placeholder text if user makes no entry

JavaScript, Sixth Edition 20

Programming Forms to Increase  

Content Accuracy (cont'd.)

• Automatically updating an associated field based on 

a user entry

– Multiple elements may be associated

• Example: check box to indicate textarea entry

– Can automatically change value of one field in 

response to change in other field

JavaScript, Sixth Edition 21

Programming Forms to Increase  

Content Accuracy (cont'd.)

• Transferring duplicate field values

– Can copy data from one field to another based on 

user indicating they should have the same value

• Example: Shipping Address and Billing Address

JavaScript, Sixth Edition 22

Programming Forms to Increase  

Content Accuracy (cont'd.)

Figure 6-10 Billing Address entries copied to Delivery Address section

JavaScript, Sixth Edition 23

Customizing Browser-Based Validation

• Modern browsers can perform some validation

– Known as browser-based validation, native validation, 

or HTML5 validation

JavaScript, Sixth Edition 24

Customizing Browser-Based Validation 

(cont'd.)

• Specifying browser-based validation parameters

– Use attributes listed in Table 6-12

Table 6-12 HTML attributes to set browser-based validation parameters



5/19/2015

5

JavaScript, Sixth Edition 25

Customizing Browser-Based Validation 

(cont'd.)

• Specifying browser-based validation parameters

– Additional validation linked to input type values

Table 6-13 Values for type attribute that trigger browser-based validation

JavaScript, Sixth Edition 26

Customizing Browser-Based Validation 

(cont'd.)

• Customizing browser-based validation feedback

– Modern browsers display feedback in similar ways, 

with variation

• Displayed after submit event triggered

• Invalid controls highlighted

• Bubble displayed next to first control

JavaScript, Sixth Edition 27

Customizing Browser-Based Validation 

(cont'd.)

• Customizing browser-based validation feedback 

(cont'd.)

– Customizable through constraint validation API

• All properties of validity object must have value of 

false for element to be valid

JavaScript, Sixth Edition 28

Customizing Browser-Based Validation 

(cont'd.)

Table 6-14 validity properties

JavaScript, Sixth Edition 29

Customizing Browser-Based Validation 

(cont'd.)

• Customizing browser-based validation feedback 

(cont'd.)

– checkValidity() and setCustomValidity()

methods

– CSS :invalid and :valid pseudo-classes

• Use to change properties of form elements based on 

validity status

JavaScript, Sixth Edition 30

Customizing Browser-Based Validation 

(cont'd.)

• Customizing browser-based validation feedback 

(cont'd.)

var fname = document.getElementbyId("firstName");

if (fname.valueMissing) {

setCustomValidity("Please fill out this field.");

}

#firstName:invalid {

background: rgb(255,233,233);

}

JavaScript

CSS



5/19/2015

6

JavaScript, Sixth Edition 31

Customizing Browser-Based Validation 

(cont'd.)

• Customizing browser-based validation feedback 

(cont'd.)

Figure 6-13 Customized browser-based validation

JavaScript, Sixth Edition 32

Customizing Browser-Based Validation 

(cont'd.)

• Customizing browser-based validation feedback 

(cont'd.)

– Bubble appearance varies among browsers

– Cannot set multiple validation messages for a single 

field at once

– Can disable browser-based validation using the 
preventDefault() method and the invalid

event

• If disabled, must program custom validation

JavaScript, Sixth Edition 33

Programming Custom Validation

• Common validation functions:

– Checking that required fields contain entries

– Checking values dependent on other fields

– Checking for appropriate content type

JavaScript, Sixth Edition 34

Validating Submitted Data

• submit event fires when a form is submitted

– Often when submit button selected

– Data usually validated when submit event fires

– preventDefault() method disables default 

behavior of an event when it fires

• Not supported in IE8, so set returnValue to false

instead

JavaScript, Sixth Edition 35

Validating Required Fields with Custom 

Functions

• Retrieve values of required fields, then check if any 

is empty

JavaScript, Sixth Edition 36

Validating Required Fields with Custom 

Functions (cont’d.)

• Checking for empty text input fields

– Check value property for a value

– Use loop statement to check each field in a group

if (document.getElementById("firstName").value === "") {

// code to run if the field is blank

}



5/19/2015

7

JavaScript, Sixth Edition 37

Validating Required Fields with Custom 

Functions (cont’d.)

• Checking for selection lists with no values

– Check value of selectedIndex property

• If no option is selected, value is -1

if (document.getElementById("state").selectedIndex === -1 {

// code to run if the field is blank

}

JavaScript, Sixth Edition 38

Validating Required Fields with Custom 

Functions (cont’d.)

• Checking for option button sets with no selection

– Check value of checked property

– Use And (&&) operators to check if no option button is 

selected

var buttons = document.getElementsByName("Color");

if (!buttons[0].checked && !buttons[1].checked && ↵

!buttons[2].checked) {

// code to run if no button is selected

}

JavaScript, Sixth Edition 39

Validating Dependent Fields with 

Custom Functions

• Sometimes need to test logic specific to a form

• Validating based on the state of a check box

– Access same checked property used with option 

button

• Validating based on text input box contents

– Can use nested if statements to account for 

possibilities when entry in one text box requires entry 

in another

JavaScript, Sixth Edition 40

Validating Dependent Fields with 

Custom Functions (cont'd.)

Figure 6-21 Flowchart diagram of validateCreateAccount() function

JavaScript, Sixth Edition 41

Validating Content Type with Custom 

Functions

• Can check whether numeric fields contain numbers

– Use isNaN() function

• returns true if value is not a number

isNaN(document.getElementById("subtotal").value)

• Character patterns like zip codes require regular 

expressions (Chapter 8)

JavaScript, Sixth Edition 42

Summary

• Validation checks that information conforms to rules

• Assistive functions reduce likelihood of user errors

• Browser-based validation is built into modern 

browsers

– Customizable through Constraint Validation API

• preventDefault() method blocks action 

normally associated with an event



5/19/2015

8

JavaScript, Sixth Edition 43

Summary (cont’d.)

• To validate required text input fields

– Retrieve the values of the required fields

– Check if the value of any of them is an empty string 

• To validate required selection lists

– Retrieve the selectedIndex value

– Check whether it’s equal to -1

JavaScript, Sixth Edition 44

Summary (cont’d.)

• To check if an option button is selected, access the 
value of its checked property. 

• To check if none of the option buttons in a set are 

selected, create a conditional statement using And 
(&&) operators

• In some cases, you need to create validation 

functions to test logic specific to your form


