
5/19/2015

1

JavaScript, Sixth Edition

Chapter 6

Enhancing and Validating Forms
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Objectives

When you complete this chapter, you will be able to:

• Enhance form usability with JavaScript

• Customize browser-based HTML validation

• Implement custom validation to check for errors and 

display error messages
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Using JavaScript with Forms

• Validation

– checking that form information provided by users 

conforms to data rules

• form object

– Represents a form in an HTML document

– Used to access form and its data
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Table 6-1 Properties of form objects

Using JavaScript with Forms (cont’d.)

Table 6-3 Methods of form objects

Table 6-2 Event of form objects
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Using JavaScript with Forms (cont'd.)

• Common elements for collecting form data:

– input

– select

– option

– textarea

– button
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Table 6-4 Properties of elements within forms

Working with Input Fields (cont’d.)
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Table 6-5 Methods of elements within forms

Working with Input Fields (cont’d.)

Table 6-6 Events of elements within forms
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Referencing Forms and Form Elements

• Can use getElementsByTagName() method:

getElementsByTagName("form")[0]

• Document object includes a forms[] array

– Contains all forms on a web page

• form object has an elements[] array
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Referencing Forms and Form Elements 

(cont’d.)

• elements[] array

– Contains objects representing each control in a form

• Reference form index number in the forms[] array

– Followed by the appropriate element index number 
from the elements[] array
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Improving Form Usability

• Before validation

– Can reduce amount of validation necessary
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Designing Forms to Collect More 

Accurate Content

• Replace input boxes with other fields that present 

limited choices
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Designing Forms to Collect More 

Accurate Content (cont'd.)

Table 6-7 Selected form elements for providing limited choices
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Designing Forms to Collect More 

Accurate Content (cont'd.)

Figure 6-3 Sample fieldset updated with option buttons and selection lists

Figure 6-2 Sample fieldset containing input elements

JavaScript, Sixth Edition 14

Programming Forms to Increase  

Content Accuracy

• Assistive functions

– Reduce likelihood of user errors

– Prevent users from entering erroneous data

• Removing default values from selection lists

– Can set default value for selection list in HTML

• Only to one of the options

– JavaScript can set selectedIndex property to -1

• Corresponds to no selection
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Programming Forms to Increase 

Content Accuracy (cont'd.)

Table 6-8 select element properties
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Programming Forms to Increase  

Content Accuracy (cont'd.)

• Dynamically Updating Selection List Values

– Can add or remove option elements from a select

element using node methods

• Can change list options based on selection in another 

field
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Programming Forms to Increase  

Content Accuracy (cont'd.)

Table 6-9 Properties of option elements
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Programming Forms to Increase  

Content Accuracy (cont'd.)

Figure 6-5 Diagram of function for dynamically updating selection list values
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Programming Forms to Increase  

Content Accuracy (cont'd.)

• Adding Placeholder Text for Older Browsers

– placeholder attribute of input and textarea

elements

• Supported by modern browsers

• Can recreate behavior with JavaScript for older 

browsers:

– Add placeholder text when page finishes loading

– Remove placeholder text when user selects field

– Add back placeholder text if user makes no entry
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Programming Forms to Increase  

Content Accuracy (cont'd.)

• Automatically updating an associated field based on 

a user entry

– Multiple elements may be associated

• Example: check box to indicate textarea entry

– Can automatically change value of one field in 

response to change in other field
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Programming Forms to Increase  

Content Accuracy (cont'd.)

• Transferring duplicate field values

– Can copy data from one field to another based on 

user indicating they should have the same value

• Example: Shipping Address and Billing Address
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Programming Forms to Increase  

Content Accuracy (cont'd.)

Figure 6-10 Billing Address entries copied to Delivery Address section
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Customizing Browser-Based Validation

• Modern browsers can perform some validation

– Known as browser-based validation, native validation, 

or HTML5 validation
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Customizing Browser-Based Validation 

(cont'd.)

• Specifying browser-based validation parameters

– Use attributes listed in Table 6-12

Table 6-12 HTML attributes to set browser-based validation parameters
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Customizing Browser-Based Validation 

(cont'd.)

• Specifying browser-based validation parameters

– Additional validation linked to input type values

Table 6-13 Values for type attribute that trigger browser-based validation
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Customizing Browser-Based Validation 

(cont'd.)

• Customizing browser-based validation feedback

– Modern browsers display feedback in similar ways, 

with variation

• Displayed after submit event triggered

• Invalid controls highlighted

• Bubble displayed next to first control
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Customizing Browser-Based Validation 

(cont'd.)

• Customizing browser-based validation feedback 

(cont'd.)

– Customizable through constraint validation API

• All properties of validity object must have value of 

false for element to be valid
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Customizing Browser-Based Validation 

(cont'd.)

Table 6-14 validity properties
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Customizing Browser-Based Validation 

(cont'd.)

• Customizing browser-based validation feedback 

(cont'd.)

– checkValidity() and setCustomValidity()

methods

– CSS :invalid and :valid pseudo-classes

• Use to change properties of form elements based on 

validity status
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Customizing Browser-Based Validation 

(cont'd.)

• Customizing browser-based validation feedback 

(cont'd.)

var fname = document.getElementbyId("firstName");

if (fname.valueMissing) {

setCustomValidity("Please fill out this field.");

}

#firstName:invalid {

background: rgb(255,233,233);

}

JavaScript

CSS
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Customizing Browser-Based Validation 

(cont'd.)

• Customizing browser-based validation feedback 

(cont'd.)

Figure 6-13 Customized browser-based validation
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Customizing Browser-Based Validation 

(cont'd.)

• Customizing browser-based validation feedback 

(cont'd.)

– Bubble appearance varies among browsers

– Cannot set multiple validation messages for a single 

field at once

– Can disable browser-based validation using the 
preventDefault() method and the invalid

event

• If disabled, must program custom validation
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Programming Custom Validation

• Common validation functions:

– Checking that required fields contain entries

– Checking values dependent on other fields

– Checking for appropriate content type
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Validating Submitted Data

• submit event fires when a form is submitted

– Often when submit button selected

– Data usually validated when submit event fires

– preventDefault() method disables default 

behavior of an event when it fires

• Not supported in IE8, so set returnValue to false

instead
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Validating Required Fields with Custom 

Functions

• Retrieve values of required fields, then check if any 

is empty
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Validating Required Fields with Custom 

Functions (cont’d.)

• Checking for empty text input fields

– Check value property for a value

– Use loop statement to check each field in a group

if (document.getElementById("firstName").value === "") {

// code to run if the field is blank

}
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Validating Required Fields with Custom 

Functions (cont’d.)

• Checking for selection lists with no values

– Check value of selectedIndex property

• If no option is selected, value is -1

if (document.getElementById("state").selectedIndex === -1 {

// code to run if the field is blank

}
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Validating Required Fields with Custom 

Functions (cont’d.)

• Checking for option button sets with no selection

– Check value of checked property

– Use And (&&) operators to check if no option button is 

selected

var buttons = document.getElementsByName("Color");

if (!buttons[0].checked && !buttons[1].checked && ↵

!buttons[2].checked) {

// code to run if no button is selected

}

JavaScript, Sixth Edition 39

Validating Dependent Fields with 

Custom Functions

• Sometimes need to test logic specific to a form

• Validating based on the state of a check box

– Access same checked property used with option 

button

• Validating based on text input box contents

– Can use nested if statements to account for 

possibilities when entry in one text box requires entry 

in another
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Validating Dependent Fields with 

Custom Functions (cont'd.)

Figure 6-21 Flowchart diagram of validateCreateAccount() function

JavaScript, Sixth Edition 41

Validating Content Type with Custom 

Functions

• Can check whether numeric fields contain numbers

– Use isNaN() function

• returns true if value is not a number

isNaN(document.getElementById("subtotal").value)

• Character patterns like zip codes require regular 

expressions (Chapter 8)
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Summary

• Validation checks that information conforms to rules

• Assistive functions reduce likelihood of user errors

• Browser-based validation is built into modern 

browsers

– Customizable through Constraint Validation API

• preventDefault() method blocks action 

normally associated with an event
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Summary (cont’d.)

• To validate required text input fields

– Retrieve the values of the required fields

– Check if the value of any of them is an empty string 

• To validate required selection lists

– Retrieve the selectedIndex value

– Check whether it’s equal to -1

JavaScript, Sixth Edition 44

Summary (cont’d.)

• To check if an option button is selected, access the 
value of its checked property. 

• To check if none of the option buttons in a set are 

selected, create a conditional statement using And 
(&&) operators

• In some cases, you need to create validation 

functions to test logic specific to your form


