
5/19/2015

1

JavaScript, Sixth Edition

Chapter 7

Using Object-Oriented JavaScript

JavaScript, Sixth Edition 2

Objectives

When you complete this chapter, you will be able to:

• Explain basic concepts related to object-oriented 

programming

• Use the Date, Number, and Math objects

• Define your own custom JavaScript objects

JavaScript, Sixth Edition 3

Introduction to Object-Oriented 

Programming

• Object-oriented programming

– Allows reuse of code without having to copy or 

recreate it

JavaScript, Sixth Edition 4

Reusing Software Objects

• Object-oriented programming (OOP)

– Creating reusable software objects 

• Easily incorporated into multiple programs

• Object

– Programming code and data treated as an individual 

unit or component

– Also called a component

• Data

– Information contained within variables or other types 

of storage structures

JavaScript, Sixth Edition 5

Reusing Software Objects (cont’d.)

• Objects range from simple controls to entire 

programs

• Popular object-oriented programming languages

– C++, Java, Visual Basic

JavaScript, Sixth Edition 6

Figure 7-1 Programming with objects

Reusing Software Objects (cont’d.)



5/19/2015

2

JavaScript, Sixth Edition 7

What Is Encapsulation?

• Encapsulated objects

– Code and data contained within the object itself

• Encapsulation places code inside a “black box”

• Interface

– Elements required for program to communicate with 

an object

• Principle of information hiding

– Any methods and properties other programmers do 

not need to access should be hidden

JavaScript, Sixth Edition 8

What Is Encapsulation? (cont’d.)

• Advantages of encapsulation

– Reduces code complexity

– Prevents accidental bugs and stealing of code

• Programming object and its interface

– Compare to a handheld calculator

Figure 7-2 Calculator interface

JavaScript, Sixth Edition 9

What Is Encapsulation? (cont’d.)

• Document object is encapsulated (black box)

– getElementById() method

• Part of the interface JavaScript uses to communicate 
with the Document object

• Microsoft Word: example of an object and its 

interface

Figure 7-3 Using the interface for the Document object

Understanding Classes

• Classes

– Grouping of code, methods, attributes, etc., making 

up an object

• Instance

– Object created from an existing class

• Instantiate: create an object from an existing class

• Instance of an object inherits its methods and 

properties from a class

• Objects in the browser object model

– Part of the web browser

– No need to instantiate them to use them
JavaScript, Sixth Edition 10

JavaScript, Sixth Edition 11

Using Built-In JavaScript Classes

Table 7-1 Built-in JavaScript classes

JavaScript, Sixth Edition 12

Using Built-In JavaScript Classes 

(cont’d.)

• Instantiating an object

– Some of the built-in JavaScript objects used 

directly in code

– Some objects require programmer to instantiate a 

new object

– Example: Math object’s PI(π) property in a script
// calculate the area of a circle based on its radius

function calcCircleArea() {

var r = document.getElementById("radius").value;

var area = Math.PI * Math.pow(r, 2); // area is pi times ↵
radius squared

return area;

}



5/19/2015

3

JavaScript, Sixth Edition 13

Using Built-In JavaScript Classes 

(cont’d.)

• Instantiating an object (cont’d.)

– Can instantiate Array object using array literal

• Example: var deptHeads = [];

– Can instantiate empty generic object using object 

literal

• Example: var accountsPayable = {};

• Generic object literal uses curly braces around value

– Can't use object literal for Date object

• Must use constructor

• Example: var today = new Date();

JavaScript, Sixth Edition 14

Using Built-In JavaScript Classes 

(cont’d.)

• Performing garbage collection

– Garbage collection

• Cleaning up, or reclaiming, memory reserved by a 

program

– Declaring a variable or instantiating a new object

• Reserves memory for the variable or object

– JavaScript knows when a program no longer needs a 

variable or object

• Automatically cleans up the memory

JavaScript, Sixth Edition 15

Using the Date, Number, and Math

Classes

• Three of most commonly used JavaScript classes:

– Date, Number, and Math

JavaScript, Sixth Edition 16

Manipulating the Date and Time with 
the Date Class

• Date class

– Methods and properties for manipulating the date and 

time

– Allows use of a specific date or time element in 
JavaScript programs

Table 7-2 Date class constructors

JavaScript, Sixth Edition 17

Manipulating the Date and Time with 
the Date Class (cont’d.)

• Example:
– var today = new Date();

– Month and year date representation in a Date object

– Stored using numbers matching actual date and year

• Days of the week and months of the year

– Stored using numeric representations

• Starting with zero: similar to an array

• Example:

– var independenceDay = new Date(1776, 6, 4);

JavaScript, Sixth Edition 18

Manipulating the Date and Time with 
the Date Class (cont’d.)

• After creating a new Date object

– Manipulate date and time in the variable using the 
Date class methods

• Date and time in a Date object 

– Not updated over time like a clock

– Date object contains the static (unchanging) date and 

time

• Set at the moment the JavaScript code instantiates the 

object



5/19/2015

4

JavaScript, Sixth Edition 19

Table 7-3 Commonly used methods of the Date class (continues)

Manipulating the Date and Time with 
the Date Class (cont’d.)

JavaScript, Sixth Edition 20

Table 7-3 Commonly used methods of the Date class

Manipulating the Date and Time with 
the Date Class (cont’d.)

JavaScript, Sixth Edition 21

Manipulating the Date and Time with 
the Date Class (cont’d.)

• Each portion of a Date object can be retrieved and 

modified using the Date object methods

– Examples:

var curDate = new Date();

curDate.getDate();

• Displaying the full text for days and months

– Use a conditional statement to check the value 
returned by the getDay() or getMonth() method

– Example:

• if/else construct to print the full text for the day of 

the week returned by the getDay() method

JavaScript, Sixth Edition 22

var today = new Date();

var curDay = today.getDay();

var weekday;

if (curDay === 0) {

weekday = "Sunday";

} else if (curDay === 1) {

weekday = "Monday";

} else if (curDay === 2) {

weekday = "Tuesday";

} else if (curDay === 3) {

weekday = "Wednesday";

} else if (curDay === 4) {

weekday = "Thursday"; 

} else if (curDay === 5) {

weekday = "Friday";

} else if (curDay === 6) {

weekday = "Saturday";

}

Manipulating the Date and Time with 
the Date Class (cont’d.)

JavaScript, Sixth Edition 23

var today = new Date();

var months = ["January","February","March",↵
"April","May","June",↵
"July","August","September",↵
"October","November","December"];

var curMonth = months[today.getMonth()];

Manipulating the Date and Time with 
the Date Class (cont’d.)

• Example: include an array named months

– 12 elements assigned full text names of the months

JavaScript, Sixth Edition 24

Manipulating Numbers with the 
Number Class

• Number class

– Methods for manipulating numbers and properties 

containing static values

• Representing some numeric limitations in the 

JavaScript language

– Can append the name of any Number class method 

or property

• To the name of an existing variable containing a 

numeric value



5/19/2015

5

JavaScript, Sixth Edition 25

Manipulating Numbers with the 
Number Class (cont’d.)

• Using Number class methods

Table 7-4 Number class methods

JavaScript, Sixth Edition 26

Manipulating Numbers with the 
Number Class (cont’d.)

• Using Number class methods (cont’d.)

– Primary reason for using any of the “to” methods

• To convert a number to a string value with a specific 

number of decimal places

– toFixed() method

• Most useful Number class method

– toLocaleString() method

• Converts a number to a string formatted with local 

numeric formatting conventions

JavaScript, Sixth Edition 27

Manipulating Numbers with the 
Number Class (cont’d.)

• Accessing Number class properties

Table 7-5 Number class properties

JavaScript, Sixth Edition 28

Performing Math Functions with the 
Math Class

• Math class

– Methods and properties for mathematical calculations

• Cannot instantiate a Math object using a statement 
such as: var mathCalc = new Math();

– Use the Math object and one of its methods or 

properties directly in the code

• Example:
var curNumber = 144;

var squareRoot = Math.sqrt(curNumber); // returns 12

JavaScript, Sixth Edition 29

Table 7-6 Math class methods

Performing Math Functions with the 
Math Class (cont’d.)

JavaScript, Sixth Edition 30

Table 7-7 Math class properties

Performing Math Functions with the 
Math Class (cont’d.)



5/19/2015

6

JavaScript, Sixth Edition 31

Performing Math Functions with the 
Math Class (cont’d.)

• Example:

– Use the PI property to calculate the area of a circle 

based on its radius

• Code uses the pow() method to raise the radius value 

to second power, and the round() method to round 

the value returned to the nearest whole number

var radius = 25;

var area = Math.PI * Math.pow(radius, 2);

var roundedArea = Math.round(area); // returns 1963

JavaScript, Sixth Edition 32

Defining Custom JavaScript Objects

• JavaScript: not a true object-oriented programming 

language

– Cannot create classes in JavaScript

– Instead, called an object-based language

• Can define custom objects

– Not encapsulated

– Useful to replicate the same functionality an unknown 

number of times in a script

JavaScript, Sixth Edition 33

Declaring Basic Custom Objects

• Use the Object object

– var objectName = new Object();

– var objectName = {};

• Can assign properties to the object

– Append property name to the object name with a 

period

JavaScript, Sixth Edition 34

Declaring Basic Custom Objects 

(cont'd.)

• Add properties using dot syntax

– Object name followed by dot followed by property 

name

– Example:

InventoryList.inventoryDate = new Date(2017, 11, 31);

JavaScript, Sixth Edition 35

Declaring Basic Custom Objects 

(cont'd.)

• Can assign values to the properties of an object 

when object first instantiated

• Example:

var PerformanceTickets = {

customerName: "Claudia Salomon",

performanceName: "Swan Lake",

ticketQuantity: 2,

performanceDate: new Date(2017, 6, 18, 20)

};

JavaScript, Sixth Edition 36

Declaring Sub-Objects

• Value of a property can be another object

– called a sub-object

– Example–order object with address sub-object:
var order = {

orderNumber: "F5987",

address: {

street: "1 Main St",

city: "Farmington",

state: "NY",

zip: "14425"

}

};



5/19/2015

7

Referring to Object Properties as 

Associative Arrays

• Associative array

– An array whose elements are referred to with an 

alphanumeric key instead of an index number

• Can also use associative array syntax to refer to the 

properties of an object

• With associative arrays

– Can dynamically build property names at runtime

JavaScript, Sixth Edition 37 JavaScript, Sixth Edition 38

Referring to Object Properties as 

Associative Arrays (cont'd.)

• Can use associative array syntax to refer to the 

properties of an object

• Example:
var stopLightColors = {

stop: "red",

caution: "yellow",

go: "green"

};

stopLightColors["caution"];

JavaScript, Sixth Edition 39

Referring to Object Properties as 

Associative Arrays (cont'd.)

• Can easily reference property names that contain 

numbers

– Example:
var order = {

item1: "KJ2435J",

price1: 23.95,

item2: "AW23454",

price2: 44.99,

item3: "2346J3B",

price3: 9.95

};

JavaScript, Sixth Edition 40

Referring to Object Properties as 

Associative Arrays (cont'd.)

• Can easily reference property names that contain 

numbers (cont'd.)

– To create order summary:
for (var i = 1; i < 4; i++) {

document.getElementById("itemList").innerHTML +=↵

"<p class='item'>" + order["item" + i] + "</p>"; 

document.getElementById("itemList").innerHTML +=↵

"<p class='price'>" + order["price" + i] + "</p>";

};

JavaScript, Sixth Edition 41

Referring to Object Properties as 

Associative Arrays (cont'd.)

• Can also write generic code to add new object 

properties that incorporate numbers

– Example—adding items to shopping cart:

totalItems += 1; // increment counter of items in order

currentItem = document.getElementById("itemName").innerHTML;

currentPrice = document.getElementById("itemPrice").innerHTML;

newItemPropertyName = "item" + totalItems; // "item4"

newPricePropertyName = "price" + totalItems; // "price4"

order.newItemPropertyName = currentItem; // order.item4 = (name)

order.newPricePropertyName = currentPrice;

// order.price4 = (price);

• Allows for as many items as user wants to purchase

JavaScript, Sixth Edition 42

Creating Methods

• Object method simply a function with a name within 

the object

• Two ways to add method to object

– Provide code for method in object

– Reference external function



5/19/2015

8

JavaScript, Sixth Edition 43

Creating Methods (cont'd.)

• Specify method name with anonymous function as 

value

– Example:

var order = {

items: {},

generateInvoice: function() { 

// function statements

} 

};

JavaScript, Sixth Edition 44

Creating Methods (cont'd.)

• Specify method name with existing function as value

– Example:

– Reference to existing function cannot have 

parentheses

function processOrder() {

// function statements

}

var order = {

items: {},

generateInvoice: processOrder

};

JavaScript, Sixth Edition 45

Enumerating custom object properties

• Custom objects can contain dozens of properties

• To execute the same statement or command block 

for all the properties within a custom object

– Use the for/in statement

– Looping statement similar to the for statement

• Syntax
for (variable in object) {

statement(s);

}

JavaScript, Sixth Edition 46

Enumerating custom object properties 

(cont'd.)

• for/in statement enumerates, or assigns an index 

to, each property in an object

• Typical use:

– validate properties within an object

JavaScript, Sixth Edition 47

var item={

itemNumber: "KJ2435J",

itemPrice: 23.95,

itemInstock: true,

itemShipDate: new Date(2017, 6, 18),

};

for (prop in order) {

if (order[prop] === "") {

order.generateErrorMessage();

}

}

Enumerating custom object properties 

(cont’d.)

• Example—checking for empty values:

JavaScript, Sixth Edition 48

Deleting Properties

• Use the delete operator

• Syntax

delete object.property

• Example:

delete order.itemInStock;



5/19/2015

9

JavaScript, Sixth Edition 49

Defining Constructor Functions

• Constructor function

– Used as the basis for a custom object

– Also known as object definition

• JavaScript objects

– Inherit all the variables and statements of the 

constructor function on which they are based

• All JavaScript functions

– Can serve as a constructor

JavaScript, Sixth Edition 50

Defining Constructor Functions 

(cont’d.)

• Example:

– Define a function that can serve as a constructor 

function
function Order(number, order, payment, ship) {

this.customerNumber = number;

this.orderDate = order;

this.paymentMethod = payment;

this.shippingDate = ship;

}

JavaScript, Sixth Edition 51

Adding Methods to a Constructor 

Function

• Can create a function to use as an object method

– Refer to object properties with this reference

– Example:
function displayOrderInfo() {

var summaryDiv = document.getElementById("summarySection");

summaryDiv.innerHTML += ("<p>Customer: " +↵

this.customerNumber + "</p>"); 

summaryDiv.innerHTML += ("<p>Order Date: " +↵

this.orderDate.toLocaleString()+ "</p>"); 

summaryDiv.innerHTML += ("<p>Payment: " +↵

this.paymentMethod + "</p>"); 

summaryDiv.innerHTML += ("<p>Ship Date: " +↵

this.shippingDate.toLocaleString() + "</p>");

}

JavaScript, Sixth Edition 52

Using the prototype Property

• After instantiating a new object

– Can assign additional object properties

• Use a period

• New property only available to that specific object

• prototype property

– Built-in property that specifies the constructor from 

which an object was instantiated

– When used with the name of the constructor function

• Any new properties you create will also be available to 

the constructor function

Using the prototype Property 

(cont’d.)

• Object definitions can use the prototype property 

to extend other object definitions

– Can create a new object based on an existing object

JavaScript, Sixth Edition 53

Summary

• Object-oriented programming (or OOP)

– The creation of reusable software objects

• Reusable software objects 

– Called components

• Object

– Programming code and data treated as an individual 

unit or component

• Objects are encapsulated

• Interface represents elements required for a source 

program to communicate with an object

JavaScript, Sixth Edition 54



5/19/2015

10

Summary (cont’d.)

• Principle of information hiding

• Code, methods, attributes, and other information 

that make up an object

– Organized using classes

• Instance

– Object created from an existing class

• An object inherits the characteristics of the class on 

which it is based

• Date class contains methods and properties for 

manipulating the date and time

JavaScript, Sixth Edition 55

Summary (cont’d.)

• Number class contains methods for manipulating 

numbers and properties

• Math class contains methods and properties for 

performing mathematical calculations

• Can define custom object

– object literal

• Can create template for custom objects

– constructor function

• this keyword refers to object that called function

• prototype property specifies object's constructor

JavaScript, Sixth Edition 56


