~% COURSE TECHNOLOGY

A~ CENGAGE Learning

JavaScript, Sixth Edition

Chapter 7
Using Object-Oriented JavaScript

5/19/2015

Objectives

When you complete this chapter, you will be able to:

» Explain basic concepts related to object-oriented
programming

» Use the Date, Number, and Math objects
+ Define your own custom JavaScript objects

JavaScript, Sixth Edition

Introduction to Object-Oriented
Programming

» Object-oriented programming

— Allows reuse of code without having to copy or
recreate it

JavaScript, Sixth Edition

Reusing Software Objects

» Object-oriented programming (OOP)

— Creating reusable software objects

« Easily incorporated into multiple programs

* Object

— Programming code and data treated as an individual

unit or component

— Also called a component

» Data

— Information contained within variables or other types
of storage structures

Javascript, Sixth Edition

Reusing Software Objects (cont’ d.)

» Objects range from simple controls to entire
programs

» Popular object-oriented programming languages
— C++, Java, Visual Basic

JavaScript, Sixth Edition

Reusing Software Objects (cont’ d.)

objects created by other
programmers

objects you create

program

Figure 7-1 Programming with objects
JavaScript, Sixth Edition




5/19/2015

What Is Encapsulation?

» Encapsulated objects

— Code and data contained within the object itself
» Encapsulation places code inside a “black box”
* Interface

— Elements required for program to communicate with
an object

* Principle of information hiding

— Any methods and properties other programmers do
not need to access should be hidden

JavaScript, Sixth Edition

What Is Encapsulation? (cont’ d.)

» Advantages of encapsulation

— Reduces code complexity

— Prevents accidental bugs and stealing of code
* Programming object and its interface

— Compare to a handheld calculator

e mepets s ertes
Teakaion i rurser e

Figure 7-2 Calculator interface
JavaScript, Sixth Edition

What Is Encapsulation? (cont’ d.)

» Document object is encapsulated (black box)
- getElementById () method
« Part of the interface JavaScript uses to communicate
with the Document object
» Microsoft Word: example of an object and its
interface
lawScriotpragam \/
N N
N /<1\
.D«mm

Figure 7-3 Using the interface for the Document object
JavaScript, Sixth Edition

Understanding Classes

» Classes

— Grouping of code, methods, attributes, etc., making
up an object

* Instance
— Object created from an existing class
* Instantiate: create an object from an existing class

* Instance of an object inherits its methods and
properties from a class

» Objects in the browser object model
— Part of the web browser
— No need to instantiate them to use them

JavaScript, Sixth Edition 10

Using Built-In JavaScript Classes

Retrieves and maripulates arguments withn a fnction
Crestis new aray objects

Crestis new Boolean objects

Retrieves and maripuates cates and times

Returns rs1-ime ermor information

Crastes new functon objects

Stores globel variables and containg various bult-in JevaScript functions.

JSoN Manipuiates ctjects formatted in JavaScript Otject Notation (JSON): avalable in
ECMAScript 5 and atex

nd progertes for
Contains methods and propertes or manioulatig numbers
object Ropresents the base cias fo al bult i JavaScrpt casses: contans stveral o the
bt in JavaScrit unctions
Reg=xp Contains methods and propertes or inding and replacing charactes I Yt srngs
String propertis for

Table 7-1 Built-in JavaScript classes

JavaScript, Sixth Edition u

Using Built-In JavaScript Classes
(cont’d.)

* Instantiating an object

— Some of the built-in JavaScript objects used
directly in code

— Some objects require programmer to instantiate a
new object

— Example: Math object’ s PI (mr) property in a script
Il calculate the area of a circle based on its radius
function calcCircleArea() {
var r = document.getElementByld("radius").value;
var area = Math.PI * Math.pow(r, 2); / area is pi times ¢
radius squared
return area;

}

JavaScript, Sixth Edition 12




5/19/2015

Using Built-In JavaScript Classes
(cont’d.)

- Instantiating an object (cont’ d.)
— Can instantiate Array object using array literal
. Example: var deptHeads = [J;

— Can instantiate empty generic object using object
literal

« Example: var accountsPayable = {};

» Generic object literal uses curly braces around value
— Can't use object literal for Date object

* Must use constructor

« Example: /@' today = new Date();

JavaScript, Sixth Edition

Using Built-In JavaScript Classes
(cont’d.)

» Performing garbage collection
— Garbage collection

« Cleaning up, or reclaiming, memory reserved by a
program

— Declaring a variable or instantiating a new object
« Reserves memory for the variable or object

— JavaScript knows when a program no longer needs a
variable or object

< Automatically cleans up the memory

JavaScript, Sixth Edition 14

Using the Date, Number, and Math
Classes

» Three of most commonly used JavaScript classes:
— Date, Number, and Math

JavaScript, Sixth Edition

Manipulating the Date and Time with
the Date Class

» Date class

— Methods and properties for manipulating the date and
time

— Allows use of a specific date or time element in
JavaScript programs

Creates & Da e object based on the numoer of millseconds that
have elapsed sinoe micnight, January 1, 1970

ctject based on a strng containing & date vake

the date and time st acconting 10
and month arguments are

Table 7-2 Date class constructors

JavaScript, Sixth Edition 16

Manipulating the Date and Time with
the Date Class (cont’ d.)

Example:
__ var today = new Date();

— Month and year date representation in a Date object
— Stored using numbers matching actual date and year
» Days of the week and months of the year
— Stored using numeric representations
« Starting with zero: similar to an array
« Example:
__ var independenceDay = new Date(1776, 6, 4);

JavaScript, Sixth Edition

Manipulating the Date and Time with
the Date Class (cont’ d.)

» After creating a new Date object

— Manipulate date and time in the variable using the
Date class methods

+ Date and time in a Date object
— Not updated over time like a clock
- Date object contains the static (unchanging) date and
time

« Set at the moment the JavaScript code instantiates the
object

JavaScript, Sixth Edition 18




5/19/2015

Manipulating the Date and Time with
the Date Class (cont’ d.)

Rems the date of & Dz ot
Res the dey of 8 Date atject
Returns the yoar of 3 D

object in four-cigh format
Perms e hour of 8 D ot

Returns the miliseconds of a Date object

Returns the minutes of 2 Date object

Retens e monf of 8 Date it

Returns the s2oonds of 8 Date object

Retums e time o a Date object
o () Retuens the curent tme 25 the nuete of miliseconds
at have esapsed sinoe midnight, Jaruary 1, 1970

(ECMASCrpt § and lter oy}

Table 7-3 Commonly used methods of the Date class (continues)

JavaScript, Sixth Edition 19

Manipulating the Date and Time with
the Date Class (cont’ d.)

0 milconcs 10993,
)

Se8 e et (0-80)of D
0w o 056 s -
090

s o -t

st o 5

et i s 060 G et oty
oy et miksecords 559

Table 7-3 Commonly used methods of the Date class

JavaScript, Sixth Edition 20

Manipulating the Date and Time with
the Date Class (cont’ d.)

« Each portion of a Date object can be retrieved and
modified using the Date object methods
— Examples:
var curDate = new Date();
curDate.getDate () ;
+ Displaying the full text for days and months
— Use a conditional statement to check the value
returned by the getDay () or getMonth () method
— Example:

« if/else construct to print the full text for the day of
the week returned by the getDay () method

JavaScript, Sixth Edition 21

Manipulating the Date and Time with
the Date Class (cont’ d.)

var today = new Date();
var curDay = today.getDay();
var weekday;
if (curDay === 0) {
weekday = "Sunday";
}else if (curDay === 1) {
weekday = "Monday";
}else if (curDay === 2) {
weekday = "Tuesday";
}else if (curDay === 3) {
weekday = "Wednesday";
}else if (curDay === 4) {
weekday = "Thursday";
}else if (curDay === 5) {
weekday = "Friday";
} else if (curDay === 6) {
weekday = "Saturday";

JavaScript, Sixth Edition 22

Manipulating the Date and Time with
the Date Class (cont’ d.)

« Example: include an array named months

— 12 elements assigned full text names of the months
var today = new Date();
var months = ["January","February","March",d
"April","May","June",¢
"July","August”,"September", ¢
"October”,"November","December"];

var curMonth = months[today.getMonth()];

JavaScript, Sixth Edition 23

Manipulating Numbers with the
Number Class

* Number class
— Methods for manipulating numbers and properties
containing static values
« Representing some numeric limitations in the
JavaScript language
— Can append the name of any Number class method
or property
« To the name of an existing variable containing a
numeric value

JavaScript, Sixth Edition 24




5/19/2015

Manipulating Numbers with the
Number Class (cont’ d.)

* Using Number class methods

toExponential (decimals) ‘Converts a number to a string in exponential notation using the
number of decimal places specified by decimals

toFixed (decimals) Converts a number to a string using the number of decimal places
specified by decimals

tolocalestring () Converts a number to a string that s formatted with local numeric
formatting ste

toPrecision (decimals) Converts a number to a string with the number of decimal places
specified by decima .l s, In ether exponential notation or in foed
notation

toString(base) Converts a number to a string using the number system specified
by base

valueOs () Returns the numeric value of a Numberr object

Table 7-4 Number class methods

JavaScript, Sixth Edition 25

Manipulating Numbers with the
Number Class (cont’ d.)

* Using Number class methods (cont’ d.)

— Primary reason for using any of the “to” methods

« To convert a number to a string value with a specific
number of decimal places

- toFixed () method
« Most useful Number class method
- toLocaleString () method

« Converts a number to a string formatted with local
numeric formatting conventions

JavaScript, Sixth Edition 26

Manipulating Numbers with the
Number Class (cont’ d.)

» Accessing Number class properties

PROPERTY i DESCRIPTION

MAX VALUE The largest positive number that can be used in JavaScript
MIN_VALUE The smallest positive number that can be used in JavaScript
NaN The value NaX, which stands for “not a number"
NEGATIVE_INFINITY The value of negative: infinity

POSITIVE_INFINITY The value of positive infinity

Table 7-5 Number class properties

JavaScript, Sixth Edition 27

Performing Math Functions with the
Math Class

* Math class
— Methods and properties for mathematical calculations

» Cannot instantiate a Math object using a statement
such as: var mathCalc = new Math();
— Use the Math object and one of its methods or
properties directly in the code

* Example:
var curNumber = 144;

var squareRoot = Math.sqrt(curNumber); / returns 12

Javascript, Sixth Edition 28

Performing Math Functions with the
Math Class (cont’ d.)

e ateobis vie o e
Tearcosraf

ez s ot x

e gt x

08 ) O 8 -855 O 1 O BTEETRA By x.
T Vi o x ounced e hghst teger

Tecue el x
T exporertof

Tl f x oundad 1 Pt owest g
P by x

" Tegectxer y

- Toe s o xr

¥ Thovabe of xrassd o 2o power
Arsedom rusber

The ¥ake o x rounded 0 e st imiger

Thosnedt x

The s oot of x
anix The sngent o x

Table 7-6 Math class methods
JavaScript, Sixth Edition 29

Performing Math Functions with the
Math Class (cont’ d.)

PROPERTY i DESCRIPTION

E Euler's constant e, which is the base of a natural logarithm; this value is approximately
2.7182818284590452354

LN1O The natural logarithm of 10, which is approximately 2.302585092994046

LN2 The natural logarithm of 2, which is approximately 0.6931471805593453

LOGLOE The base-10 logarithm of e, the base of the natural logarithms; this value is
approximately 0.4342944819032518

LOG2E The base-2 logarithm of ¢, the base of the natural logarithms; this value is approximately
1.4426950408889634

PI A constant representing the ratio of the circumference of a circle to its diameter, which
is approximately 3.1415926535897932

SQRT1_2 The square root of 1/2, which is approximately 0.7071067811865476

SQRT2 The square root of 2, which is approximately 1.4142135623730951

Table 7-7 Math class properties

JavaScript, Sixth Edition 30




5/19/2015

Performing Math Functions with the
Math Class (cont’ d.)

* Example:
— Use the PI property to calculate the area of a circle
based on its radius

» Code uses the pow () method to raise the radius value
to second power, and the round () method to round
the value returned to the nearest whole number

var radius = 25;
var area = Math.PI * Math.pow(radius, 2);
var roundedArea = Math.round(area); // returns 1963

JavaScript, Sixth Edition

Defining Custom JavaScript Objects

» JavaScript: not a true object-oriented programming
language
— Cannot create classes in JavaScript
— Instead, called an object-based language
» Can define custom objects
— Not encapsulated

— Useful to replicate the same functionality an unknown
number of times in a script

JavaScript, Sixth Edition 32

Declaring Basic Custom Objects

* Use the Object object
__ var objectName = new Object();

__ var objectName = {};

» Can assign properties to the object

— Append property name to the object name with a
period

JavaScript, Sixth Edition

Declaring Basic Custom Objects
(cont'd.)

» Add properties using dot syntax

— Object name followed by dot followed by property
name

— Example:

InventoryList.inventoryDate = new Date(2017, 11, 31);

JavaScript, Sixth Edition 34

Declaring Basic Custom Objects
(cont'd.)

» Can assign values to the properties of an object
when object first instantiated

* Example:

var PerformanceTickets = {
customerName: "Claudia Salomon”,
performanceName: "Swan Lake",
ticketQuantity: 2,
performanceDate: new Date(2017, 6, 18, 20)
h

JavaScript, Sixth Edition

Declaring Sub-Objects

» Value of a property can be another object
— called a sub-object
— Example—order object with address sub-object:
var order = {
orderNumber: "F5987",
address: {
street: "1 Main St",
city: "Farmington”,
state: "NY",
zip: "14425"
}

I3

JavaScript, Sixth Edition 36




5/19/2015

Referring to Object Properties as
Associative Arrays

» Associative array

— An array whose elements are referred to with an
alphanumeric key instead of an index number

» Can also use associative array syntax to refer to the
properties of an object

» With associative arrays
— Can dynamically build property names at runtime

JavaScript, Sixth Edition 37

Referring to Object Properties as
Associative Arrays (cont'd.)

» Can use associative array syntax to refer to the
properties of an object
* Example:
var stopLightColors = {
stop: "red"”,
caution: "yellow",
go: "green”
¥

stopLightColors[“caution”];

JavaScript, Sixth Edition 38

Referring to Object Properties as
Associative Arrays (cont'd.)

» Can easily reference property names that contain
numbers

— Example:
ar order = {
item1: "KJ2435J",
pricel: 23.95,
item2: "AW23454",
price2: 44.99,
item3: "2346J3B",
price3: 9.95

¥

JavaScript, Sixth Edition 39

Referring to Object Properties as
Associative Arrays (cont'd.)

» Can easily reference property names that contain
numbers (cont'd.)
— To create order summary:
for (vari=1;i<4;i++){
document.getElementByld("itemList").innerHTML +=¢
"<p class="item'>" + order["item" + i] + "</p>";
document.getElementByld(“itemList").innerHTML +=¢
"<p class="price">" + order["price" + i] + "</p>";

JavaScript, Sixth Edition 40

Referring to Object Properties as
Associative Arrays (cont'd.)

» Can also write generic code to add new object
properties that incorporate numbers
— Example—adding items to shopping cart:

totalltems += 1; // increment counter of items in order

currentltem = document.getElementByld("itemName").innerHTML;
currentPrice = document.getElementByld("itemPrice").innerHTML;
newltemPropertyName = "item” + totalltems; // "item4"
newPricePropertyName = "price"” + totalltems; / "price4”
order.newltemPropertyName = currentitem; / order.item4 = (name)
order.newPricePropertyName = currentPrice;

/I order.price4 = (price);

« Allows for as many items as user wants to purchase

JavaScript, Sixth Edition 41

Creating Methods

* Object method simply a function with a name within
the object

» Two ways to add method to object
— Provide code for method in object
— Reference external function

JavaScript, Sixth Edition 42




5/19/2015

Creating Methods (cont'd.)

» Specify method name with anonymous function as
value
— Example:

var order = {
items: {},
generatelnvoice: function() {
/I function statements

JavaScript, Sixth Edition 43

Creating Methods (cont'd.)

» Specify method name with existing function as value
— Example:
function processOrder() {
/I function statements

var order = {
items: {},
generatelnvoice: processOrder
h
— Reference to existing function cannot have
parentheses

JavaScript, Sixth Edition 44

Enumerating custom object properties

» Custom objects can contain dozens of properties

» To execute the same statement or command block
for all the properties within a custom object
— Use the for/in statement
— Looping statement similar to the for statement

* Syntax
for (variable in object) {

statement(s);

}

JavaScript, Sixth Edition 45

Enumerating custom object properties
(cont'd.)
« for/in statement enumerates, or assigns an index
to, each property in an object

» Typical use:
— validate properties within an object

JavaScript, Sixth Edition 46

Enumerating custom object properties
(cont’ d.)

« Example—checking for empty values:
var item={
itemNumber: "KJ2435J",
itemPrice: 23.95,
itemlnstock: true,
itemShipDate: new Date(2017, 6, 18),
I3
for (prop in order) {
if (order[prop] ==="") {
order.generateErrorMessage();

}
}

JavaScript, Sixth Edition a7

Deleting Properties

* Use the delete operator
* Syntax

delete object.property
* Example:

delete order.itemInStock;

JavaScript, Sixth Edition 48




5/19/2015

Defining Constructor Functions

+ Constructor function
— Used as the basis for a custom object
— Also known as object definition

» JavaScript objects

— Inherit all the variables and statements of the
constructor function on which they are based

» All JavaScript functions
— Can serve as a constructor

JavaScript, Sixth Edition

Defining Constructor Functions
(cont’d.)

+ Example:

— Define a function that can serve as a constructor

function
function Order(number, order, payment, ship) {

this.customerNumber = number;
this.orderDate = order;
this.paymentMethod = payment;
this.shippingDate = ship;

JavaScript, Sixth Edition 50

Adding Methods to a Constructor
Function

» Can create a function to use as an object method
— Refer to object properties with this reference
— Example:
function displayOrderinfo() {

var summaryDiv = document.getElementByld("summarySection");

summaryDiv.innerHTML += ("<p>Customer: " +¢
this.customerNumber + "</p>");

summaryDiv.innerHTML += ("<p>Order Date: " +¢
this.orderDate.toLocaleString()+ "</p>");

summaryDiv.innerHTML += ("<p>Payment: " +¢
this.paymentMethod + "</p>");

summaryDiv.innerHTML += ("<p>Ship Date: " +¢
this.shippingDate.toLocaleString() + "</p>");

}

JavaScript, Sixth Edition

Using the prototype Property

+ After instantiating a new object

— Can assign additional object properties

« Use a period

* New property only available to that specific object
* prototype property

— Built-in property that specifies the constructor from

which an object was instantiated
— When used with the name of the constructor function

« Any new properties you create will also be available to
the constructor function

JavaScript, Sixth Edition 52

Using the prototype Property
(cont’d.)

* Object definitions can use the prototype property
to extend other object definitions

— Can create a new object based on an existing object

JavaScript, Sixth Edition

Summary

Object-oriented programming (or OOP)
— The creation of reusable software objects
Reusable software objects
— Called components
* Object
— Programming code and data treated as an individual
unit or component
» Objects are encapsulated

* Interface represents elements required for a source
program to communicate with an object

JavaScript, Sixth Edition 54




5/19/2015

Summary (cont’ d.)

* Principle of information hiding

« Code, methods, attributes, and other information
that make up an object
— Organized using classes

* Instance
— Object created from an existing class

» An object inherits the characteristics of the class on
which it is based

» Date class contains methods and properties for
manipulating the date and time

JavaScript, Sixth Edition 55

Summary (cont’ d.)

Number class contains methods for manipulating
numbers and properties

Math class contains methods and properties for
performing mathematical calculations

Can define custom object

— object literal

Can create template for custom objects

— constructor function

this keyword refers to object that called function
prototype property specifies object's constructor

JavaScript, Sixth Edition 56

10



