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JavaScript, Sixth Edition

Chapter 7

Using Object-Oriented JavaScript
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Objectives

When you complete this chapter, you will be able to:

• Explain basic concepts related to object-oriented 

programming

• Use the Date, Number, and Math objects

• Define your own custom JavaScript objects
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Introduction to Object-Oriented 

Programming

• Object-oriented programming

– Allows reuse of code without having to copy or 

recreate it
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Reusing Software Objects

• Object-oriented programming (OOP)

– Creating reusable software objects 

• Easily incorporated into multiple programs

• Object

– Programming code and data treated as an individual 

unit or component

– Also called a component

• Data

– Information contained within variables or other types 

of storage structures
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Reusing Software Objects (cont’d.)

• Objects range from simple controls to entire 

programs

• Popular object-oriented programming languages

– C++, Java, Visual Basic

JavaScript, Sixth Edition 6

Figure 7-1 Programming with objects

Reusing Software Objects (cont’d.)
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What Is Encapsulation?

• Encapsulated objects

– Code and data contained within the object itself

• Encapsulation places code inside a “black box”

• Interface

– Elements required for program to communicate with 

an object

• Principle of information hiding

– Any methods and properties other programmers do 

not need to access should be hidden
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What Is Encapsulation? (cont’d.)

• Advantages of encapsulation

– Reduces code complexity

– Prevents accidental bugs and stealing of code

• Programming object and its interface

– Compare to a handheld calculator

Figure 7-2 Calculator interface
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What Is Encapsulation? (cont’d.)

• Document object is encapsulated (black box)

– getElementById() method

• Part of the interface JavaScript uses to communicate 
with the Document object

• Microsoft Word: example of an object and its 

interface

Figure 7-3 Using the interface for the Document object

Understanding Classes

• Classes

– Grouping of code, methods, attributes, etc., making 

up an object

• Instance

– Object created from an existing class

• Instantiate: create an object from an existing class

• Instance of an object inherits its methods and 

properties from a class

• Objects in the browser object model

– Part of the web browser

– No need to instantiate them to use them
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Using Built-In JavaScript Classes

Table 7-1 Built-in JavaScript classes
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Using Built-In JavaScript Classes 

(cont’d.)

• Instantiating an object

– Some of the built-in JavaScript objects used 

directly in code

– Some objects require programmer to instantiate a 

new object

– Example: Math object’s PI(π) property in a script
// calculate the area of a circle based on its radius

function calcCircleArea() {

var r = document.getElementById("radius").value;

var area = Math.PI * Math.pow(r, 2); // area is pi times ↵
radius squared

return area;

}
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Using Built-In JavaScript Classes 

(cont’d.)

• Instantiating an object (cont’d.)

– Can instantiate Array object using array literal

• Example: var deptHeads = [];

– Can instantiate empty generic object using object 

literal

• Example: var accountsPayable = {};

• Generic object literal uses curly braces around value

– Can't use object literal for Date object

• Must use constructor

• Example: var today = new Date();
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Using Built-In JavaScript Classes 

(cont’d.)

• Performing garbage collection

– Garbage collection

• Cleaning up, or reclaiming, memory reserved by a 

program

– Declaring a variable or instantiating a new object

• Reserves memory for the variable or object

– JavaScript knows when a program no longer needs a 

variable or object

• Automatically cleans up the memory
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Using the Date, Number, and Math

Classes

• Three of most commonly used JavaScript classes:

– Date, Number, and Math
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Manipulating the Date and Time with 
the Date Class

• Date class

– Methods and properties for manipulating the date and 

time

– Allows use of a specific date or time element in 
JavaScript programs

Table 7-2 Date class constructors
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Manipulating the Date and Time with 
the Date Class (cont’d.)

• Example:
– var today = new Date();

– Month and year date representation in a Date object

– Stored using numbers matching actual date and year

• Days of the week and months of the year

– Stored using numeric representations

• Starting with zero: similar to an array

• Example:

– var independenceDay = new Date(1776, 6, 4);
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Manipulating the Date and Time with 
the Date Class (cont’d.)

• After creating a new Date object

– Manipulate date and time in the variable using the 
Date class methods

• Date and time in a Date object 

– Not updated over time like a clock

– Date object contains the static (unchanging) date and 

time

• Set at the moment the JavaScript code instantiates the 

object
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Table 7-3 Commonly used methods of the Date class (continues)

Manipulating the Date and Time with 
the Date Class (cont’d.)
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Table 7-3 Commonly used methods of the Date class

Manipulating the Date and Time with 
the Date Class (cont’d.)
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Manipulating the Date and Time with 
the Date Class (cont’d.)

• Each portion of a Date object can be retrieved and 

modified using the Date object methods

– Examples:

var curDate = new Date();

curDate.getDate();

• Displaying the full text for days and months

– Use a conditional statement to check the value 
returned by the getDay() or getMonth() method

– Example:

• if/else construct to print the full text for the day of 

the week returned by the getDay() method
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var today = new Date();

var curDay = today.getDay();

var weekday;

if (curDay === 0) {

weekday = "Sunday";

} else if (curDay === 1) {

weekday = "Monday";

} else if (curDay === 2) {

weekday = "Tuesday";

} else if (curDay === 3) {

weekday = "Wednesday";

} else if (curDay === 4) {

weekday = "Thursday"; 

} else if (curDay === 5) {

weekday = "Friday";

} else if (curDay === 6) {

weekday = "Saturday";

}

Manipulating the Date and Time with 
the Date Class (cont’d.)
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var today = new Date();

var months = ["January","February","March",↵
"April","May","June",↵
"July","August","September",↵
"October","November","December"];

var curMonth = months[today.getMonth()];

Manipulating the Date and Time with 
the Date Class (cont’d.)

• Example: include an array named months

– 12 elements assigned full text names of the months
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Manipulating Numbers with the 
Number Class

• Number class

– Methods for manipulating numbers and properties 

containing static values

• Representing some numeric limitations in the 

JavaScript language

– Can append the name of any Number class method 

or property

• To the name of an existing variable containing a 

numeric value
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Manipulating Numbers with the 
Number Class (cont’d.)

• Using Number class methods

Table 7-4 Number class methods
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Manipulating Numbers with the 
Number Class (cont’d.)

• Using Number class methods (cont’d.)

– Primary reason for using any of the “to” methods

• To convert a number to a string value with a specific 

number of decimal places

– toFixed() method

• Most useful Number class method

– toLocaleString() method

• Converts a number to a string formatted with local 

numeric formatting conventions
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Manipulating Numbers with the 
Number Class (cont’d.)

• Accessing Number class properties

Table 7-5 Number class properties
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Performing Math Functions with the 
Math Class

• Math class

– Methods and properties for mathematical calculations

• Cannot instantiate a Math object using a statement 
such as: var mathCalc = new Math();

– Use the Math object and one of its methods or 

properties directly in the code

• Example:
var curNumber = 144;

var squareRoot = Math.sqrt(curNumber); // returns 12
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Table 7-6 Math class methods

Performing Math Functions with the 
Math Class (cont’d.)
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Table 7-7 Math class properties

Performing Math Functions with the 
Math Class (cont’d.)



5/19/2015

6

JavaScript, Sixth Edition 31

Performing Math Functions with the 
Math Class (cont’d.)

• Example:

– Use the PI property to calculate the area of a circle 

based on its radius

• Code uses the pow() method to raise the radius value 

to second power, and the round() method to round 

the value returned to the nearest whole number

var radius = 25;

var area = Math.PI * Math.pow(radius, 2);

var roundedArea = Math.round(area); // returns 1963
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Defining Custom JavaScript Objects

• JavaScript: not a true object-oriented programming 

language

– Cannot create classes in JavaScript

– Instead, called an object-based language

• Can define custom objects

– Not encapsulated

– Useful to replicate the same functionality an unknown 

number of times in a script
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Declaring Basic Custom Objects

• Use the Object object

– var objectName = new Object();

– var objectName = {};

• Can assign properties to the object

– Append property name to the object name with a 

period
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Declaring Basic Custom Objects 

(cont'd.)

• Add properties using dot syntax

– Object name followed by dot followed by property 

name

– Example:

InventoryList.inventoryDate = new Date(2017, 11, 31);
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Declaring Basic Custom Objects 

(cont'd.)

• Can assign values to the properties of an object 

when object first instantiated

• Example:

var PerformanceTickets = {

customerName: "Claudia Salomon",

performanceName: "Swan Lake",

ticketQuantity: 2,

performanceDate: new Date(2017, 6, 18, 20)

};
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Declaring Sub-Objects

• Value of a property can be another object

– called a sub-object

– Example–order object with address sub-object:
var order = {

orderNumber: "F5987",

address: {

street: "1 Main St",

city: "Farmington",

state: "NY",

zip: "14425"

}

};
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Referring to Object Properties as 

Associative Arrays

• Associative array

– An array whose elements are referred to with an 

alphanumeric key instead of an index number

• Can also use associative array syntax to refer to the 

properties of an object

• With associative arrays

– Can dynamically build property names at runtime
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Referring to Object Properties as 

Associative Arrays (cont'd.)

• Can use associative array syntax to refer to the 

properties of an object

• Example:
var stopLightColors = {

stop: "red",

caution: "yellow",

go: "green"

};

stopLightColors["caution"];

JavaScript, Sixth Edition 39

Referring to Object Properties as 

Associative Arrays (cont'd.)

• Can easily reference property names that contain 

numbers

– Example:
var order = {

item1: "KJ2435J",

price1: 23.95,

item2: "AW23454",

price2: 44.99,

item3: "2346J3B",

price3: 9.95

};
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Referring to Object Properties as 

Associative Arrays (cont'd.)

• Can easily reference property names that contain 

numbers (cont'd.)

– To create order summary:
for (var i = 1; i < 4; i++) {

document.getElementById("itemList").innerHTML +=↵

"<p class='item'>" + order["item" + i] + "</p>"; 

document.getElementById("itemList").innerHTML +=↵

"<p class='price'>" + order["price" + i] + "</p>";

};
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Referring to Object Properties as 

Associative Arrays (cont'd.)

• Can also write generic code to add new object 

properties that incorporate numbers

– Example—adding items to shopping cart:

totalItems += 1; // increment counter of items in order

currentItem = document.getElementById("itemName").innerHTML;

currentPrice = document.getElementById("itemPrice").innerHTML;

newItemPropertyName = "item" + totalItems; // "item4"

newPricePropertyName = "price" + totalItems; // "price4"

order.newItemPropertyName = currentItem; // order.item4 = (name)

order.newPricePropertyName = currentPrice;

// order.price4 = (price);

• Allows for as many items as user wants to purchase
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Creating Methods

• Object method simply a function with a name within 

the object

• Two ways to add method to object

– Provide code for method in object

– Reference external function
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Creating Methods (cont'd.)

• Specify method name with anonymous function as 

value

– Example:

var order = {

items: {},

generateInvoice: function() { 

// function statements

} 

};
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Creating Methods (cont'd.)

• Specify method name with existing function as value

– Example:

– Reference to existing function cannot have 

parentheses

function processOrder() {

// function statements

}

var order = {

items: {},

generateInvoice: processOrder

};
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Enumerating custom object properties

• Custom objects can contain dozens of properties

• To execute the same statement or command block 

for all the properties within a custom object

– Use the for/in statement

– Looping statement similar to the for statement

• Syntax
for (variable in object) {

statement(s);

}
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Enumerating custom object properties 

(cont'd.)

• for/in statement enumerates, or assigns an index 

to, each property in an object

• Typical use:

– validate properties within an object
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var item={

itemNumber: "KJ2435J",

itemPrice: 23.95,

itemInstock: true,

itemShipDate: new Date(2017, 6, 18),

};

for (prop in order) {

if (order[prop] === "") {

order.generateErrorMessage();

}

}

Enumerating custom object properties 

(cont’d.)

• Example—checking for empty values:
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Deleting Properties

• Use the delete operator

• Syntax

delete object.property

• Example:

delete order.itemInStock;
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Defining Constructor Functions

• Constructor function

– Used as the basis for a custom object

– Also known as object definition

• JavaScript objects

– Inherit all the variables and statements of the 

constructor function on which they are based

• All JavaScript functions

– Can serve as a constructor
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Defining Constructor Functions 

(cont’d.)

• Example:

– Define a function that can serve as a constructor 

function
function Order(number, order, payment, ship) {

this.customerNumber = number;

this.orderDate = order;

this.paymentMethod = payment;

this.shippingDate = ship;

}
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Adding Methods to a Constructor 

Function

• Can create a function to use as an object method

– Refer to object properties with this reference

– Example:
function displayOrderInfo() {

var summaryDiv = document.getElementById("summarySection");

summaryDiv.innerHTML += ("<p>Customer: " +↵

this.customerNumber + "</p>"); 

summaryDiv.innerHTML += ("<p>Order Date: " +↵

this.orderDate.toLocaleString()+ "</p>"); 

summaryDiv.innerHTML += ("<p>Payment: " +↵

this.paymentMethod + "</p>"); 

summaryDiv.innerHTML += ("<p>Ship Date: " +↵

this.shippingDate.toLocaleString() + "</p>");

}
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Using the prototype Property

• After instantiating a new object

– Can assign additional object properties

• Use a period

• New property only available to that specific object

• prototype property

– Built-in property that specifies the constructor from 

which an object was instantiated

– When used with the name of the constructor function

• Any new properties you create will also be available to 

the constructor function

Using the prototype Property 

(cont’d.)

• Object definitions can use the prototype property 

to extend other object definitions

– Can create a new object based on an existing object
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Summary

• Object-oriented programming (or OOP)

– The creation of reusable software objects

• Reusable software objects 

– Called components

• Object

– Programming code and data treated as an individual 

unit or component

• Objects are encapsulated

• Interface represents elements required for a source 

program to communicate with an object
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Summary (cont’d.)

• Principle of information hiding

• Code, methods, attributes, and other information 

that make up an object

– Organized using classes

• Instance

– Object created from an existing class

• An object inherits the characteristics of the class on 

which it is based

• Date class contains methods and properties for 

manipulating the date and time
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Summary (cont’d.)

• Number class contains methods for manipulating 

numbers and properties

• Math class contains methods and properties for 

performing mathematical calculations

• Can define custom object

– object literal

• Can create template for custom objects

– constructor function

• this keyword refers to object that called function

• prototype property specifies object's constructor
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