
5/19/2015

1

JavaScript, Sixth Edition

Chapter 11

Updating Web Pages with Ajax

JavaScript, Sixth Edition 2

Objectives

When you complete this chapter, you will be able to:

• Describe the steps involved in using Ajax to update 

data

• Create an HTTP request and interpret an HTTP 

response

• Request and receive server data using the 
XMLHttpRequest object

• Process data received from a web service and add it 

to the DOM

• Update app data using JSON-P

JavaScript, Sixth Edition 3

Introduction to Ajax

• Allows client web pages to quickly interact and 

exchange data with a web server

• Without reloading entire web page

• Relies on

– Programming language such as JavaScript 

– Data interchange format such as JSON or XML

JavaScript, Sixth Edition 4

Introduction to Ajax (cont’d.)

• XMLHttpRequest object (XHR object)

– Uses HTTP to exchange data between a client 

computer and a web server

– Can be used to request and receive data without 

reloading a web page

JavaScript, Sixth Edition 5

Introduction to Ajax (cont’d.)

• Combining XMLHttpRequest with DHTML

– Allows update and modification to individual portions 

of a web page

• With data received from a web server

• Google search suggestions

– One of the first commercial Ajax applications

Figure 11-1 Google search suggestions provided using Ajax
JavaScript, Sixth Edition 6

Figure 11-2 Standard HTTP request

Introduction to Ajax (cont’d.)



5/19/2015

2

JavaScript, Sixth Edition 7

Figure 11-3 HTTP request with the XHR object

Introduction to Ajax (cont’d.)

JavaScript, Sixth Edition 8

Understanding the Limitations of Ajax

• Data requested can be located on a third-party 

server

– Not all web servers or browsers support this

• Can use a server-side script as a proxy to access 

data from another domain

• Proxy

– Server that acts for or performs requests for other 

clients and servers

JavaScript, Sixth Edition 9

Accessing Content on a Separate 

Domain

• Web service

– Data source made available on one domain for use 
on other domains across web

– Does not contain graphical user interface or 
command-line interface

– Simply provides services and data in response to 
requests

• Up to the client to provide an implementation for a 
program calling a web service

– Often requires API key

• Unique identifier assigned by service to each 
person/organization that wants access

JavaScript, Sixth Edition 10

Accessing Content on a Separate 

Domain (cont'd.)

• Proxy scripts often written in PHP

– Language specifically designed to run on web servers

JavaScript, Sixth Edition 11

Running Ajax from a Web Server

• Must open Ajax files from a web server 

– With the HTTP (http://) or HTTPS (https://) protocol 

• Can install server software on any computer

• Popular web server software

– Apache HTTP Server

– Nginx ("engine-ex")

– Microsoft Internet Information Services (IIS)

JavaScript, Sixth Edition 12

Working with HTTP

• Using Ajax to update data involves 4 steps:

1. Instantiate an XMLHttpRequest object for the web 

browser where the script will run.

2. Use the XMLHttpRequest object to send a request 

to the server.

3. Receive the response from the server containing the 

requested data.

4. Process the data returned from the server, and 

incorporate the data into the app.



5/19/2015

3

JavaScript, Sixth Edition 13

Working with HTTP (cont'd.)

Figure 11-6 Using Ajax to update data
JavaScript, Sixth Edition 14

Working with HTTP (cont'd.)

Figure 11-7 Using Ajax with a proxy server to update data

JavaScript, Sixth Edition 15

Working with HTTP (cont'd.)

• Request

– Process of asking for a web page from a web server

• Response

– Web server’s reply

• Uniform Resource Locator (URL)

– A web page's unique address

– Consists of two parts

• Protocol (usually HTTP)

• Web server’s domain name or a web server’s Internet 

Protocol address

JavaScript, Sixth Edition 16

Working with HTTP (cont’d.)

• Hypertext Transfer Protocol (HTTP)

– Set of rules defining how requests made by an HTTP 
client to an HTTP server

– Defines how responses returned from an HTTP 
server to an HTTP client

• HTTP client

– Refers to an application (web browser) making the 
request

• HTTP server (another name for a web server)

– Refers to a computer that receives HTTP requests 
and returns responses to HTTP clients

JavaScript, Sixth Edition 17

Working with HTTP (cont’d.)

• Host

– Computer system being accessed by a remote 

computer

• W3C and Internet Engineering Task Force jointly 

develop HTTP

– Version 1.1: most recent version of HTTP commonly 

used today

– Version 2.0: in development

• Modern browser already support some features

JavaScript, Sixth Edition 18

Understanding HTTP Messages

• HTTP messages

– HTTP client requests and server responses

• HTTP client opens a connection to the server

– Submits a request message

– Web server returns a response message appropriate 

to the request type

• Format:
Start line (request method or status returned)

Header lines (zero or more)

Blank line

Message body (optional)



5/19/2015

4

JavaScript, Sixth Edition 19

Understanding HTTP Messages 

(cont’d.)

• Headers

– Define information about the request or response 

message and about the contents of the message 

body

• 47 HTTP 1.1 headers

– generic headers used in request or response 

messages

– headers specific to a request, response, or message 

body

• Format for using a header

header: value

JavaScript, Sixth Edition 20

Understanding HTTP Messages 

(cont’d.)

• Cache-Control header

– Specifies how a web browser should cache any 

server content it receives

• Caching

– Temporary storage of data for faster access

– Web browser attempts to locate any necessary data 

in its cache

• Before making a request from a web server

– Goes against the reason for using Ajax

• Include Cache-Control: no-cache

JavaScript, Sixth Edition 21

Understanding HTTP Messages 

(cont’d.)

• Blank line always follows last header line

– Optional: message body can follow the blank line in 

the messages

• Most common types of HTTP requests

– GET and POST

• Other HTTP request methods

– HEAD, DELETE, OPTIONS, PUT, and TRACE

• Can use browser tools to examine HTTP headers

JavaScript, Sixth Edition 22

Sending HTTP Requests

• GET method

– Used for standard web page requests

– Can have a query string or form data appended to the 

URL

• POST request

– Similar to a GET request except that any submitted 

data is included in the message body

• Immediately following the blank line after the last 

header

JavaScript, Sixth Edition 23

Table 11-1 Common request headers

Sending HTTP Requests (cont’d.)

JavaScript, Sixth Edition 24

Table 11-2 Common message body headers

Sending HTTP Requests (cont’d.)



5/19/2015

5

JavaScript, Sixth Edition 25

Receiving HTTP Responses

• HTTP response messages

– Take the same format as request messages

– Return protocol and version of the HTTP server

• Along with a status code and descriptive text

• Status codes format

– 1xx: (informational) - Request received

– 2xx: (success) - Request successful

– 3xx: (redirection) - Request cannot be completed 
without further action

– 4xx: (client error) - Request cannot be fulfilled due to 
a client error

JavaScript, Sixth Edition 26

Receiving HTTP Responses (cont’d.)

– 5xx: (server error) - Request cannot be fulfilled 

due to a server error

Table 11-3 Common response codes

JavaScript, Sixth Edition 27

Receiving HTTP Responses (cont’d.)

• Zero or more response headers follow the status 

line

• Response returned from a server

– Can be much more involved than original request 

that generated it

Table 11-4 Common response headers

JavaScript, Sixth Edition 28

Requesting Server Data

• XMLHttpRequest object

– Key to incorporating Ajax in JavaScript code

– Allows use of use JavaScript and HTTP to exchange 

data between a web browser and a web server

JavaScript, Sixth Edition 29

Table 11-5 XMLHttpRequest object methods

Requesting Server Data (cont’d.)

JavaScript, Sixth Edition 30

Table 11-6 XMLHttpRequest object properties

Requesting Server Data (cont’d.)



5/19/2015

6

JavaScript, Sixth Edition 31

Instantiating an XMLHttpRequest

Object

• Use the XMLHttpRequest constructor
var httpRequest = new XMLHttpRequest();

• Originally created specifically to request XML data

– Name hasn't changed, but now capable of more

• Most JavaScript programmers use a series of 
nested try/catch statements

• Opening and closing HTTP connections is a 
bottleneck in page loading

– HTTP/1.1 automatically keeps the client-server 
connection open unless it is specifically closed

• Can make Ajax programs faster by reusing an 
instantiated XMLHttpRequest object

JavaScript, Sixth Edition 32

Instantiating an XMLHttpRequest

Object (cont’d.)

var curRequest = false;

var httpRequest;

function getRequestObject() {

try {

httpRequest = new XMLHttpRequest();

}

catch (requestError) { 

document.getElementById("main").innerHTML = "Your↵
browser does not support this content";

return false;

}

return httpRequest;

}

if (!curRequest) {

curRequest = getRequestObject();

}

JavaScript, Sixth Edition 33

Opening and Sending a Request

• Use the open() method with the instantiated 

XMLHttpRequest object

– To specify the request method (GET or POST) and 

URL

• open() method accepts three optional arguments

– async, username, password

• abort() method

– Used to cancel any existing HTTP requests before 

beginning a new one

JavaScript, Sixth Edition 34

Opening and Sending a Request 

(cont’d.)

• send() method

– Submit the request to the server

– Accepts a single argument containing the message 

body

• POST requests more involved

– Must manually build name-value pairs to submit

– Must submit at least Content-Type header before 

send() method

– Also should submit Content-Length header and 

Connection header

JavaScript, Sixth Edition 35

Receiving Server Data

• responseXML property

– Contains the HTTP response as an XML document

– Only if server response includes the Content-Type 
header with a MIME type value of text/xml

• responseText property

– Contains the HTTP response as a text string

JavaScript, Sixth Edition 36

Processing XML Data in a Response

• Assign property values to document nodes

– Assign value of responseXML property to a variable

– Use innerHTML and node properties to assign 
values of XML document stored in variable to 
appropriate elements



5/19/2015

7

JavaScript, Sixth Edition 37

Processing Text Data in a Response

• responseText value almost always a JSON string

– First use JSON.parse() to convert to object

– Then access property values of new object and add 
to DOM elements

JavaScript, Sixth Edition 38

Sending and Receiving Synchronous 

Requests and Responses

• Synchronous request

– Stops the processing of the JavaScript code until a 

response returned from the server

• Check XMLHttpRequest object’s status property 

value

– Ensure response received successfully

JavaScript, Sixth Edition 39

Sending and Receiving Synchronous 

Requests and Responses (cont’d.)

• Synchronous responses

– Easier to handle

• Drawback

– Script will not continue processing until the response 

is received

• Use asynchronous requests with the send()

method

JavaScript, Sixth Edition 40

Sending and Receiving Asynchronous 

Requests and Responses

• Asynchronous request

– Allows JavaScript to continue processing while it 

waits for a server response

• Create an asynchronous request

– Pass a value of true as the third argument of the 

open() method

• Or omit the argument altogether

• Receive a response

– Use the XMLHttpRequest object’s readyState

property and onreadystatechange event

JavaScript, Sixth Edition 41

Sending and Receiving Asynchronous 

Requests and Responses (cont’d.)

• Example:
stockRequest.abort();

stockRequest.open("get","StockCheck.php?" + "checkQuote=" +↵

tickerSymbol, true);

stockRequest.send(null);

stockRequest.onreadystatechange = fillStockInfo;

JavaScript, Sixth Edition 42

Sending and Receiving Asynchronous 

Requests and Responses (cont’d.)

• Value assigned to the readyState property

– Updated automatically

• According to the current statement of the HTTP request

• If property assigned a value of 4

– Response finished loading



5/19/2015

8

JavaScript, Sixth Edition 43

Sending and Receiving Asynchronous 

Requests and Responses (cont’d.)

• Example:
function fillStockInfo() {

if (stockRequest.readyState === 4 && stockRequest.status↵

=== 200) {

var stockValues = stockRequest.responseText;

document.getElementById("ticker").innerHTML =↵

stockValues.ticker;

...

}

}

JavaScript, Sixth Edition 44

Refreshing Server Data Automatically

• Automatically refresh data obtained from an HTTP 

server

– Use JavaScript’s setTimeout() or 

setInterval() methods

• Send request to the server

• Read and process the data returned from the server

JavaScript, Sixth Edition 45

Creating Cross-Domain Requests 

Without a Proxy Server

• Two alternatives to proxies for working around 

same-origin policy

– JSON-P (JSON with padding)

• Requests JSON content using a script element 

rather than an XHR object

– CORS (Cross-Origin Resource Sharing)

• Server sends special response header that indicates 

data may be used on other domains

JavaScript, Sixth Edition 46

Creating Cross-Domain Requests 

Without a Proxy Server (cont'd.)

Table 11-7 Comparison of XHR proxy, JSON-P, and CORS

JavaScript, Sixth Edition 47

Updating Content with JSON-P

• script element not subject to same-origin policy

• Program running on web server returns content

– JSON object treated as parameter for function call

– Called function processes JSON object

JavaScript, Sixth Edition 48

Updating Content with JSON-P 

(cont'd.)

Figure 11-14 Using JSON-P to update data



5/19/2015

9

JavaScript, Sixth Edition 49

Updating Content with JSON-P 

(cont'd.)

• JSON-P URL generally consists of 2 parts:

– Request information

• URL of service, parameters

– Callback query string

• Keyword (usually "callback") & name of function to call

JavaScript, Sixth Edition 50

Updating Content with JSON-P 

(cont'd.)

• JSON-P opens a security hole in your website

– If data source compromised, content you receive is a 

potential attack route on your site

– Use JSON-P only with web service you trust

• JSON-P exposes API key or password to end users

– Use only with trusted users, such as employees

JavaScript, Sixth Edition 51

Updating Content with CORS

• Cross-domain request within an XHR object

• Part of XMLHttpRequest2 specification

– Additional properties, methods, and events for XHR 

object

• Enables content provider to convey permission

– Access-Control-Allow-Origin HTTP response 

header

• Value includes requesting domain

– XDomainRequest object (Microsoft)

• Must check first if browser defines this object

JavaScript, Sixth Edition 52

Summary

• Ajax allows data exchange with web server without 

reloading page

• XMLHttpRequest object

– Uses HTTP to exchange data between a client 

computer and a web server

• Proxy is common technique for working around 

same-origin policy with Ajax

• HTTP defines rules for requests and responses 

between client and server

JavaScript, Sixth Edition 53

Summary (cont’d.)

• Use methods and properties of an instantiated 
XMLHttpRequest object with JavaScript

• First step to exchange data between an HTTP client 
and a web server

– Instantiate an XMLHttpRequest object

• To improve performance

– Call the abort() method of the XMLHttpRequest

object

• Use the send() method with the instantiated 

XMLHttpRequest object to submit the request to 

the server

JavaScript, Sixth Edition 54

Summary (cont’d.)

• Server response assigned to responseXML or 

responseText property

• Synchronous request stops the processing of the 

JavaScript code until a response returned

• Asynchronous request allows JavaScript to continue 

processing while waiting for a server response

• readystatechange event fires when value 

assigned to readyState property changes



5/19/2015

10

JavaScript, Sixth Edition 55

Summary (cont’d.)

• JSON with padding (JSON-P) requests JSON 
content using script element rather than XHR 

object

• Cross-Origin Resource Sharing (CORS)

– Server sends HTTP response header indicating data 

may be used on other domains


